Login
EN
[EN] English
[FR] Français
Login
EN
[EN] English
[FR] Français
Give us feedback
Explore
Search
Special collections
Statistics
News
Help
Start on ORBi
Deposit
Profile
Publication List
Add your ORCID
Tutorials
Legal Information
Training sessions
About
What's ORBi ?
Impact and visibility
Around ORBi
About statistics
About metrics
OAI-PMH
ORBi team
Release Notes
Back
Home
Detailled Reference
Download
Poster (Scientific congresses and symposiums)
Rank-constrained linear regression: a Riemannian approach
Meyer, Gilles
;
Bonnabel, Silvère
;
Sepulchre, Rodolphe
2010
•
Low-rank Methods for Large-scale Machine Learning, NIPS Workshop
Permalink
https://hdl.handle.net/2268/115169
Files (1)
Send to
Details
Statistics
Bibliography
Similar publications
Files
Full Text
poster-nips-lowrank-2010.pdf
Publisher postprint (2.14 MB)
Download
All documents in ORBi are protected by a
user license
.
Send to
RIS
BibTex
APA
Chicago
Permalink
X
Linkedin
copy to clipboard
copied
Details
Keywords :
low-rank; linear regression; geometric optimization algorithms
Research Center/Unit :
Systems and Modeling
Disciplines :
Computer science
Author, co-author :
Meyer, Gilles
;
Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Bonnabel, Silvère;
Mines ParisTech > Robotics Center
Sepulchre, Rodolphe
;
Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Rank-constrained linear regression: a Riemannian approach
Publication date :
December 2010
Event name :
Low-rank Methods for Large-scale Machine Learning, NIPS Workshop
Event place :
Whistler, Canada
Event date :
11-12-2010
Audience :
International
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 22 March 2012
Statistics
Number of views
63 (0 by ULiège)
Number of downloads
167 (0 by ULiège)
More statistics
Bibliography
Similar publications
Contact ORBi