

Université de Liège

Gilles Meyer*, Silvère Bonnabel°, and Rodolphe Sepulchre*

*Department of EECS, University of Liège, Belgium {g.meyer, r.sepulchre}@ulg.ac.be

◆Robotics center, Mines ParisTech, France silvere.bonnabel@mines-paristech.fr

Abstract

This poster presents novel algorithms for learning a linear regression model whose parameter is a real fixed-rank matrix.

The focus is on the non linear nature of the search space.

Because the set of fixed-rank matrices enjoys a rich Riemannian manifold structure, the theory of line-search algorithms on matrix manifolds can be applied [1].

The resulting algorithms scale to high-dimensional problems, enjoy local convergence properties, and connect with the recent contributions on learning fixed-rank matrices [3,4,5,6,10].

The proposed algorithms generalize our recent work on learning fixed-rank symmetric positive semidefinite matrices [2].

Problem formulation

Given data matrix instances $\mathbf{X} \in \mathbb{R}^{d_2 \times d_1}$, observations $y \in \mathbb{R}$, and a linear regression model $\hat{y} = \text{Tr}(\mathbf{W}\mathbf{X})$, solve

$$\min_{\mathbf{W} \in \mathbb{R}^{d_1 imes d_2}} \mathbb{E}_{\mathbf{X},y} \{ \ell(\hat{y},y) \}, \quad ext{subject to} \quad ext{rank}(\mathbf{W}) = r.$$

The loss function is the quadratic loss $\ell(\hat{y}, y) = \frac{1}{2}(\hat{y} - y)^2$.

In practice, a surrogate cost function for the expectation above is

$$f_n(\mathbf{W}) = \frac{1}{n} \sum_{i=1}^n \ell(\hat{y}_i, y_i),$$
 (batch algorithms),

or the instantaneous cost

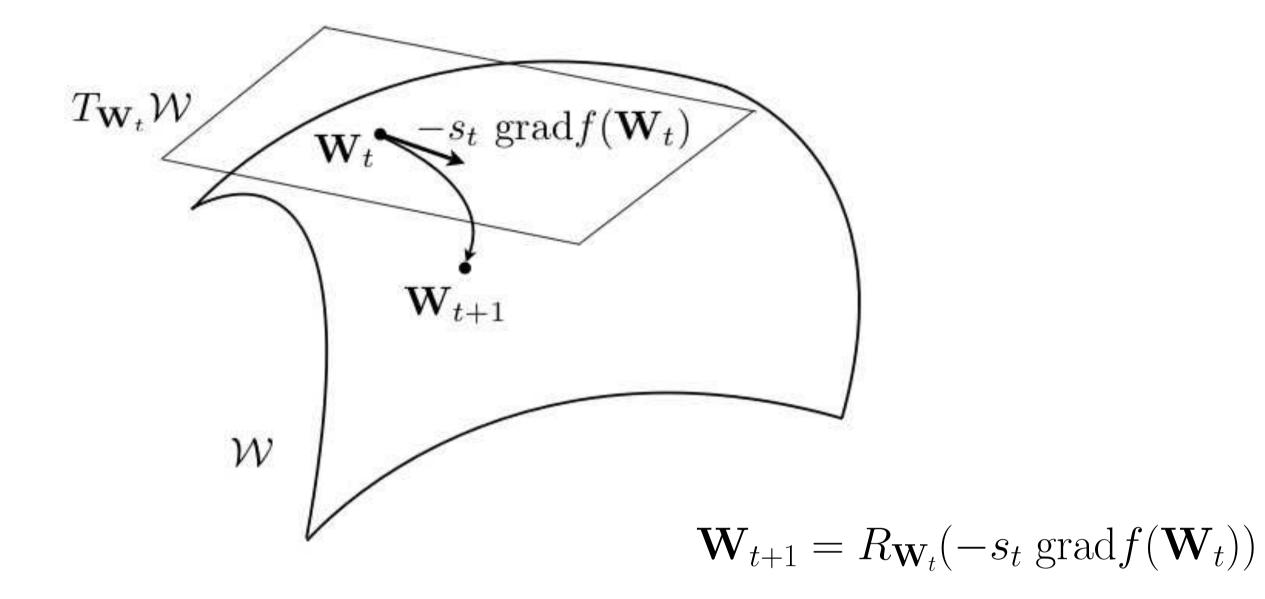
$$f_t(\mathbf{W}) = \ell(\hat{y}_t, y_t),$$
 (online algorithms).

Driving applications

- Low-rank matrix completion [3,4,5,10]. Completing the missing entries of a matrix ${f W}$ given a subset of its entries fits in the considered regression framework. Observations y_{ij} are the known entries and $\mathbf{X}_{ij}=\mathbf{e}_i\mathbf{e}_i^T$ such that $\hat{y}_{ij} = \text{Tr}(\mathbf{W}\mathbf{X}_{ij}) = \mathbf{W}_{ij}$, whenever (i, j) belongs to the set of known entries.
- Learning on pairs [7]. Given triplets $(\mathbf{x}, \mathbf{z}, y)$ with $\mathbf{x} \in \mathbb{R}^{d_1}$, $\mathbf{z} \in \mathbb{R}^{d_2}$ and $y \in \mathbb{R}$, learn a regression model $\hat{y} = \text{Tr}(\mathbf{W}\mathbf{z}\mathbf{x}^T) = \mathbf{x}^T\mathbf{W}\mathbf{z}$.
- ullet $f Multi-task\ regression\ [8].$ Learning of a parameter ${f W}\in\mathbb{R}^{d imes P}$ that is shared between P related regression problems. The model is given by $\hat{y}_{pi}= ext{Tr}(\mathbf{W}\mathbf{e}_p\mathbf{x}_{pi}^T)$, where $\mathbf{e}_p\in\mathbb{R}^P$ and $\mathbf{x}_{pi}\in\mathbb{R}^d$ is the i-th data for the p-th problem. The cost function typically contains a data fitting term and a term that accounts for the information that is shared between the problems.
- $\mathbf{Ranking}$ [6]. Compute a relevance score $\hat{y}(\mathbf{x}_i,\mathbf{x}_j) = \mathrm{Tr}(\mathbf{W}\mathbf{x}_j\mathbf{x}_i^T)$ such that $\hat{y}(\mathbf{x}_i, \mathbf{x}_i^+) > \hat{y}(\mathbf{x}_i, \mathbf{x}_i^-)$, whenever \mathbf{x}_i^+ is more relevant to \mathbf{x}_i than \mathbf{x}_i^- .

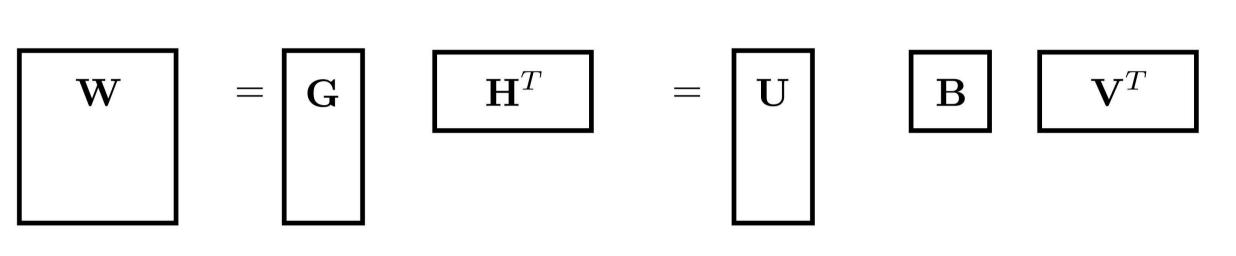
A common feature of these problems is that the input matrix ${f X}$ is rank-one.

Line-search algorithms on matrix manifolds



Gradient iteration on a Riemannian manifold: the search direction $-\operatorname{grad} f(\mathbf{W}_t)$ belongs to the tangent space $T_{\mathbf{W}_t}\mathcal{W}$ and the updated point \mathbf{W}_{t+1} automatically remains inside the manifold.

Fixed-rank factorizations and quotient geometries



$$\mathbb{R}^{d_1 \times d_2}$$
 $\mathbb{R}^{d_1 \times r}_*$ $\mathbb{R}^{d_2 \times r}_*$ $\mathrm{St}(r, d_1)$ $\mathrm{St}(r, d_2)$ $\mathrm{rank}(\mathbf{W}) = r$ $\mathbf{U}^T \mathbf{U} = \mathbf{I}$ $\mathbf{B} \succ 0$ $\mathbf{V}^T \mathbf{V} = \mathbf{I}$

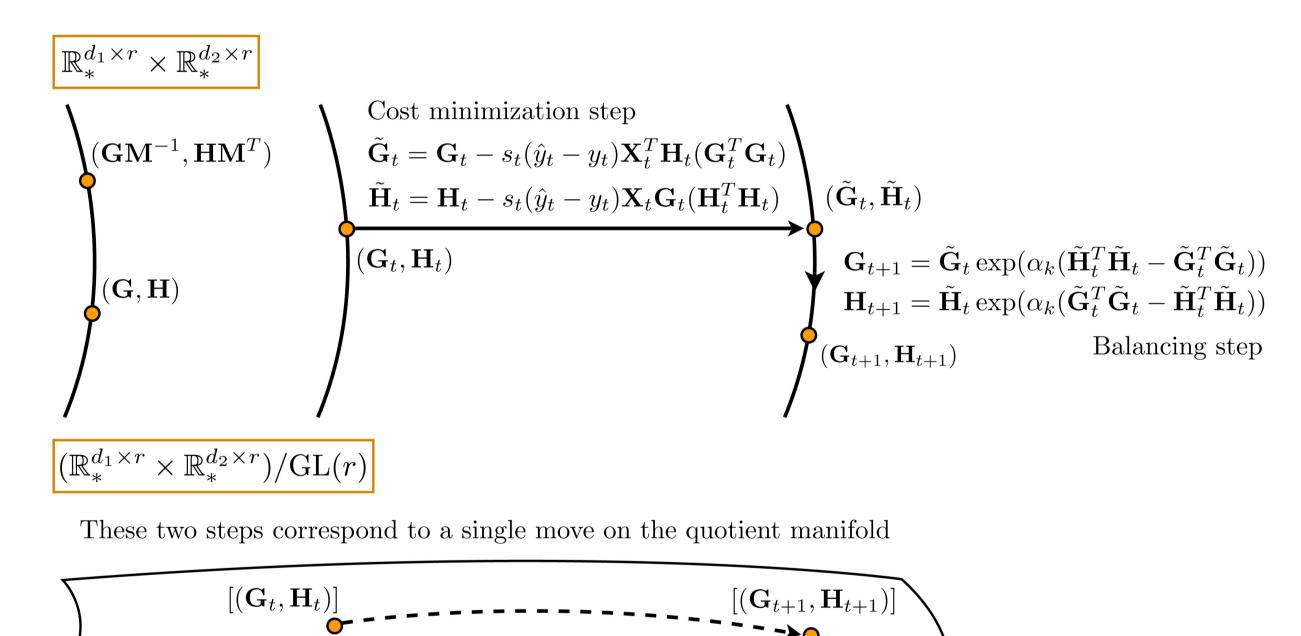
$$\mathcal{F}(r, d_1, d_2)$$
 $\simeq (\mathbb{R}_*^{d_1 \times r} \times \mathbb{R}_*^{d_2 \times r})/\mathrm{GL}(r)$ $\simeq (\mathrm{St}(r, d_1) \times \mathrm{S}_+(r) \times \mathrm{St}(r, d_2))/\mathrm{O}(r)$
Equivalence $(\mathbf{G}, \mathbf{H}) \mapsto (\mathbf{G}\mathbf{M}^{-1}, \mathbf{H}\mathbf{M}^T)$ $(\mathbf{U}, \mathbf{B}, \mathbf{V}) \mapsto (\mathbf{U}\mathbf{O}, \mathbf{O}^T\mathbf{B}\mathbf{O}, \mathbf{V}\mathbf{O})$

mapping where $\mathbf{O}^T \mathbf{O} = \mathbf{O} \mathbf{O}^T = \mathbf{I}$ where $\det(\mathbf{M}) \neq 0$ A given element W of the search space is represented by an entire equivalence class of matrices.

Line-search algorithms on the quotient manifold moves from one equivalence class to another.

Linear regression with cheap regularization

Linear regression with a balanced factorization

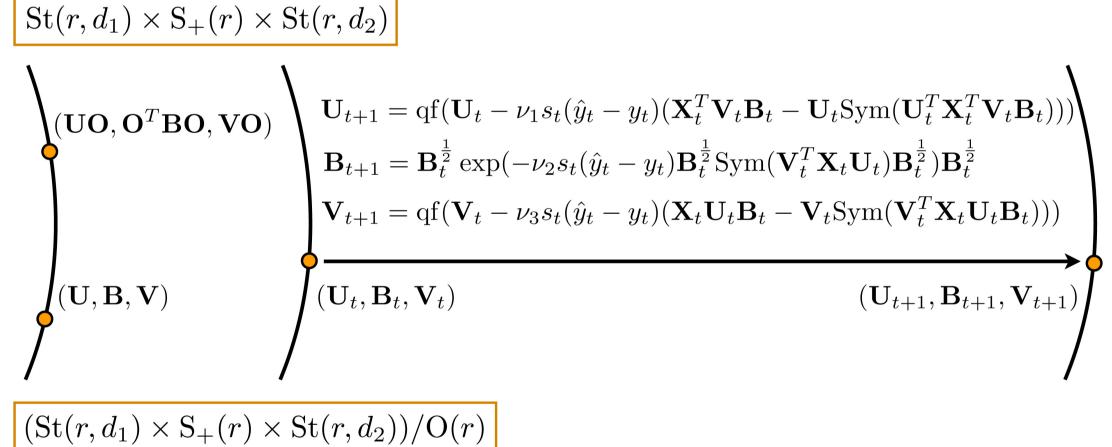


The algorithm converges to a local minimum of the cost that is a balanced factorization

The balancing step minimizes the function $\Omega(\mathbf{G}, \mathbf{H}) = \|\mathbf{G}\|_F^2 + \|\mathbf{H}\|_F^2$ along a given fiber.

The computational complexity is $O(d_1d_2r)$, and $O((d_1+d_2)r^2)$ when X is rank-one.

Balanced factorizations ensure good numerical conditioning and robustness to noise [3].

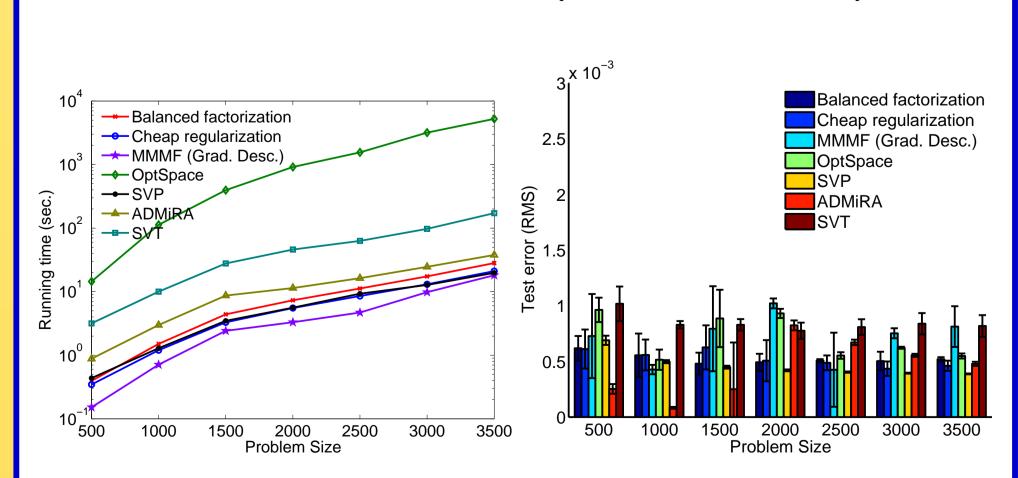


$$[(\mathbf{U}_t,\mathbf{B}_t,\mathbf{V}_t)] \qquad [(\mathbf{U}_{t+1},\mathbf{B}_{t+1},\mathbf{V}_{t+1})]$$

- The algorithm converges to a local minimum of the cost, and the considered factorization automatically encodes the structure of a balanced factorization.
- A regularization on $\|\mathbf{W}\|_F^2$ is equivalent to a cheap regularization on $\|\mathbf{B}\|_F^2$.
- The parameters $\nu_1, \nu_2, \nu_3 \geq 0$ weight the learning of the different matrices **U**, **B** and **V**.
- The computational complexity is $O(d_1d_2r)$, and $O((d_1+d_2)r^2)$ when ${\bf X}$ is rank-one.

Matrix completion (synthetic data)

 $\mathbf{W} = \mathbf{G}\mathbf{H}^T$ with $\mathbf{G}^T\mathbf{G} = \mathbf{H}^T\mathbf{H}$.

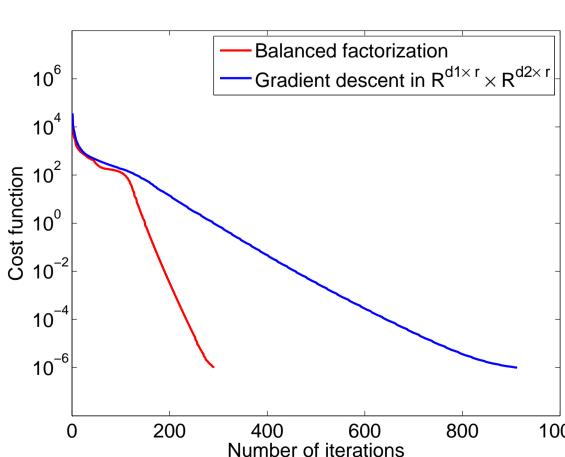


The proposed algorithms compete with the state-of-the-art: MMMF [3], OptSpace [5], SVP [4], ADMiRA [12], SVT [11].

Experimental setup:

- Random rank-2 matrices $\mathbf{W} \in \mathbb{R}^{d \times d}$ for various sizes d;
- A fraction p = 0.1 of entries are randomly selected for training (batch mode);
- The competing algorithms all stop when a RMSE ≤ 0.001 is achieved.

A numerical benefit of balancing



The classical gradient descent algorithm in $\mathbb{R}^{d_1 \times r} \times \mathbb{R}^{d_2 \times r}$:

$$\mathbf{G}_{t+1} = \mathbf{G}_t - s_t(\hat{y}_t - y_t)\mathbf{x}_i\mathbf{z}_t^T\mathbf{H}_t, \quad \mathbf{H}_{t+1} = \mathbf{H}_t - s_t(\hat{y}_t - y_t)\mathbf{z}_i\mathbf{x}_t^T\mathbf{G}_t,$$

converges slowly when the factorization is unbalanced (e.g. $\|\mathbf{G}\|_F \approx 2\|\mathbf{H}\|_F$). **Experimental setup:**

- Regression model: $\hat{y} = \mathbf{x}^T \mathbf{G} \mathbf{H}^T \mathbf{z} + \epsilon$, $\epsilon \sim \mathcal{N}(0, 10^{-3})$;
- Random data: $\{(\mathbf{x}_i,\mathbf{z}_i,y_i)\}_{i=1}^n$ with $\mathbf{x}_i\in\mathbb{R}^{50}$, $\mathbf{z}_i\in\mathbb{R}^{25}$, n=2500.

References

- [1] P.-A. Absil, R. Mahony and R. Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton University press, 2008.
- [2] G. Meyer, S. Bonnabel and R. Sepulchre. Regression on fixed-rank positive semidefinite matrices: a Riemannian approach. JMLR, accepted pending minor revisions, 2010. http://arxiv.org/abs/1006.1288
- [3] J. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative prediction. ICML, 2005.
- [4] R. Meka, P. Jain and I. Dhillon. Guaranteed rank minimization via singular value projection., NIPS, 2010.
- [5] R. H. Keshavan, A. Montanari and S. Oh. Matrix completion from noisy entries.
- JMLR, 11(Jul):2057-2078, 2010.
- [6] U. Shalit, D. Weinshall and G. Chechik. Online learning in the manifold of low-rank matrices.
- NIPS, 2010. [7] K. Bleakley and Y. Yamanishi. Supervised prediction of drug-target interactions using
- bipartite local models. Bioinformatics, 25(18):2397-2403, 2009.
- [8] T. Evgeniou, C.A. Micchelli and M. Pontil. Learning multiple tasks with kernel methods.
- JMLR, 6(Apr):615-637, 2005. [9] U. Helmke and J. Moore. Optimization and Dynamical Systems. Springer, 1996.
- [10] L. Simonsson and L. Eldén Grassmann algorithms for low rank approximation of matrices
- with missing values. BIT Numerical Mathematics, 50(1):173-191, 2010. [11] J.-F. Cai, E.J. Candès, and Z. Shen A singular value thresholding algorithm for matrix
- completion. SIAM Journal on Optimization, 20(4):1956a1982, 2010. [12] K. Lee and Y. Bresler ADMiRA: atomic decomposition for minimum rank approximation.
- IEEE Transactions on Information Theory, Vol. 56 Issue 9, 2009.

Acknowledgments