[en] Tree-based ensemble methods, such as random forests and extremely randomized trees, are methods of choice for handling high dimensional problems. One important drawback of these methods however is the complexity of the models (i.e. the large number and size of trees) they produce to achieve good performances.
In this work, several research directions are identified to address this problem. Among those, we have developed the following one. From a tree ensemble, one can extract a set of binary features, each one associated to a leaf or a node of a tree and being true for a given object only if it reaches the corresponding leaf or node when propagated in this tree. Given this representation, the prediction of an ensemble can be simply retrieved by linearly combining these characteristic features with appropriate weights. We apply a linear feature selection method, namely the monotone LASSO, on these features, in order to simplify the tree ensemble. A subtree will then be pruned as soon as the characteristic features corresponding to its constituting nodes are not selected in the linear model.
Empirical experiments show that the combination of the monotone LASSO with features extracted from tree ensembles leads at the same time to a drastic reduction of the number of features and can improve the accuracy with respect to unpruned ensembles of trees.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.