[en] Primary ciliary dyskinesia (PCD) is an inherited disorder characterized by recurrent infections of the upper and lower respiratory tract, reduced fertility in males and situs inversus in about 50% of affected individuals (Kartagener syndrome). It is caused by motility defects in the respiratory cilia that are responsible for airway clearance, the flagella that propel sperm cells and the nodal monocilia that determine left-right asymmetry. Recessive mutations that cause PCD have been identified in genes encoding components of the outer dynein arms, radial spokes and cytoplasmic pre-assembly factors of axonemal dyneins, but these mutations account for only about 50% of cases of PCD. We exploited the unique properties of dog populations to positionally clone a new PCD gene, CCDC39. We found that loss-of-function mutations in the human ortholog underlie a substantial fraction of PCD cases with axonemal disorganization and abnormal ciliary beating. Functional analyses indicated that CCDC39 localizes to ciliary axonemes and is essential for assembly of inner dynein arms and the dynein regulatory complex.
Disciplines :
Genetics & genetic processes
Author, co-author :
Merveille, Anne-Christine ✱; Université de Liège - ULiège > Département clinique des animaux de compagnie et des équidés > Pathologie médicale des petits animaux
Davis, Erica E ✱
Becker-Heck, Anita ✱
Legendre, Marie ✱
Amirav, Israel
Bataille, Geraldine
Belmont, John
Beydon, Nicole
Billen, Frédéric ; Université de Liège - ULiège > Département clinique des animaux de compagnie et des équidés > Pathologie médicale des petits animaux
Clement, Annick
Clercx, Cécile ; Université de Liège - ULiège > Département clinique des animaux de compagnie et des équidés > Pathologie médicale des petits animaux
Georges, Michel ✱; Université de Liège - ULiège > Département clinique des animaux de compagnie et des équidés > Pathologie médicale des petits animaux
Zariwala, M.A. et al. Genetic defects in ciliary structure and function. Annu. Rev. Physiol. 69, 423-450 (2007).
Cavrenne, R. et al. Primary ciliary dyskinesia and situs inversus in a young dog. Vet. Rec. 163, 54-55 (2008).
Randolph, J.F. & Castleman, W.L. Immotile cilia syndrome in two Old-English sheep dog littermates. J. Small Anim. Pract. 25, 679-686 (1984).
Gherman, A. et al. The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat. Genet. 38, 961-962 (2006).
Inglis, P.N. et al. Piecing together a ciliome. Trends Genet. 22, 491-500 (2006).
Merchant, S.S. et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318, 245-250 (2007).
Pazour, G.J. et al. Proteomic analysis of a eukaryotic cilium. J. Cell Biol. 170, 103-113 (2005).
McClintock, T.S. et al. Tissue expression patterns identify mouse cilia genes. Physiol. Genomics 32, 198-206 (2008).
Omran, H. et al. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 456, 611-616 (2008).
Baker, K. et al. Direct and indirect roles for Nodal signaling in two axis conversions during asymmetric morphogenesis of the zebrafsh heart. Proc. Natl. Acad. Sci. USA 105, 13924-13929 (2008).
Papon, J.F. et al. A 20-year experience of electron microscopy in the diagnosis of primary ciliary dyskinesia. Eur. Respir. J. 35, 1057-1063 (2010).
Kennedy, M.P. et al. Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation 115, 2814-2821 (2007).
Fliegauf, M. et al. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am. J. Respir. Crit. Care Med. 171, 1343-1349 (2005).
Heuser, T. et al. The dynein regulatory complex is the nexin link and a major regulatory node in cilia and fagella. J. Cell Biol. 187, 921-933 (2009).
Colantonio, J.R. et al. The dynein regulatory complex is required for ciliary motility and otolith biogenesis in the inner ear. Nature 457, 205-209 (2009).
Hill, K.L. et al. T lymphocyte-triggering factor of African trypanosomes is associated with the fagellar fraction of the cytoskeleton and represents a new family of proteins that are present in several divergent eukaryotes. J. Biol. Chem. 275, 39369-39378 (2000).
Ralston, K.S. et al. Flagellar motility contributes to cytokinesis in Trypanosoma brucei and is modulated by an evolutionarily conserved dynein regulatory system. Eukaryot. Cell 5, 696-711 (2006).
Rupp, G. & Porter, M.E. A subunit of the dynein regulatory complex in Chlamydomonas is a homologue of a growth arrest-specifc gene product. J. Cell Biol. 162, 47-57 (2003).
Becker-Heck, A. et al. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat. Genet. published online, doi: 10.1038/ng.727 (5 December 2010).
Huang, B., Ramanis, Z. & Luck, D.J. Suppressor mutations in Chlamydomonas reveal a regulatory mechanism for fagellar function. Cell 28, 115-124 (1982).
Piperno, G., Mead, K. & Shestak, W. The inner dynein arms I2 interact with a "dynein regulatory complex" in Chlamydomonas fagella. J. Cell Biol. 118, 1455-1463 (1992).
Piperno, G., Mead, K., LeDizet, M. & Moscatelli, A. Mutations in the "dynein regulatory complex" alter the ATP-insensitive binding sites for inner arm dyneins in Chlamydomonas axonemes. J. Cell Biol. 125, 1109-1117 (1994).
Piperno, G., Mead, K. & Henderson, S. Inner dynein arms but not outer dynein arms require the activity of kinesin homologue protein KHP1 (FLA10) to reach the distal part of fagella in Chlamydomonas. J. Cell Biol. 133, 371-379 (1996).
Chang, B. et al. In-frame deletion in a novel centrosomal/ciliary protein CEP290/ NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum. Mol. Genet. 15, 1847-1857 (2006).
Charlier, C. et al. Highly effective SNP based association mapping and management of recessive defects in livestock. Nat. Genet. 40, 449-454 (2008).
Ge, B. et al. Survey of allelic expression using EST mining. Genome Res. 15, 1584-1591 (2005).
Olbrich, H. et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat. Genet. 30, 143-144 (2002).
Olbrich, H. et al. Axonemal localization of the dynein component DNAH5 is not altered in secondary ciliary dyskinesia. Pediatr. Res. 59, 418-422 (2006).
Sisson, J.H., Stoner, J.A., Ammons, B.A. & Wyatt, T.A. All-digital capture and whole-feld analysis of ciliary beat frequency. J. Microsc. 211, 103-111 (2003).