Article (Scientific journals)
Experimental Design applied to spin coating of 2D colloidal crystal masks : a relevant method?
Colson, Pierre; Cloots, Rudi; Henrist, Catherine
2011In Langmuir, 27 (21), p. 12800-12806
Peer Reviewed verified by ORBi
 

Files


Full Text
Colson_Langmuir_2011.pdf
Publisher postprint (8.43 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Abstract :
[en] Monolayers of colloidal spheres are used as masks in nanosphere lithography (NSL) for the selective deposition of nanostructured layers. Several methods exist for the formation of the self-organized particles monolayers, among which spin coating appears to be very promising. However, a spin coating process is defined by several parameters like several ramps, rotation speeds and durations. All parameters influence the spreading and drying of the droplet containing the particles. Moreover, scientists are confronted to the formation of numerous defects in spin coated layers, limiting well-ordered areas to a few µm2. So far, empiricism mainly ruled the world of nanoparticles self-organization by spin coating and much of the literature is experimentally based. Therefore, the development of experimental protocols to control the ordering of particles is a major goal for further progress in NSL. We applied experimental design to spin coating, to evaluate the efficiency of this method to extract and model the relationships between the experimental parameters and the degree of ordering in the particles monolayers. A set of experiments was generated by the MODDE software and applied to the spin coating of latex suspension (diam. 490 nm). We calculated the ordering by a homemade image analysis tool. The results of Partial Least Squares (PLS) modeling show that the proposed mathematical model only fits data from strictly monolayers but is not predictive for new sets of parameters. We submitted the data to Principal Component Analysis (PCA) that was able to explain 91% of the results when based on strictly monolayers samples. PCA shows that the ordering was positively correlated to the ramp time and negatively correlated to the first rotation speed. We obtain large defect-free domains with the best set of parameters tested in this study. This protocol leads to areas of 200 µm2, which has never been reported so far.
Disciplines :
Chemistry
Author, co-author :
Colson, Pierre  ;  Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
Cloots, Rudi ;  Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
Henrist, Catherine ;  Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
Language :
English
Title :
Experimental Design applied to spin coating of 2D colloidal crystal masks : a relevant method?
Publication date :
2011
Journal title :
Langmuir
ISSN :
0743-7463
eISSN :
1520-5827
Publisher :
American Chemical Society, Washington, United States - District of Columbia
Volume :
27
Issue :
21
Pages :
12800-12806
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
BELSPO - SPP Politique scientifique - Service Public Fédéral de Programmation Politique scientifique
Available on ORBi :
since 29 September 2011

Statistics


Number of views
136 (32 by ULiège)
Number of downloads
4 (4 by ULiège)

Scopus citations®
 
82
Scopus citations®
without self-citations
80
OpenCitations
 
77

Bibliography


Similar publications



Contact ORBi