Paper published in a book (Scientific congresses and symposiums)
Improving Groundwater Flow Model Conceptualisation and Calibration with ERT and Self-potential Methods
Robert, Tanguy; Therrien, René; Lemieux, Jean-Michel et al.
2011In EarthDoc - Near Surface 2011 – 17th European Meeting of Environmental and Engineering Geophysics
Peer reviewed
 

Files


Full Text
Robert et al. 2011_Proceedings_Near_Surface_2011_F13.pdf
Publisher postprint (2.72 MB)
Request a copy
Annexes
NS2011_ROBERT_F13.pdf
Publisher postprint (3.11 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Fractures; ERT; Self-potential; Groundwater flow; Conceptualisation; Calibration; Implementation; HydroGeoSphere; Modeling; Inversion; Hydrogeophysics
Abstract :
[en] The self-potential (SP) method relies on passive measurements of the ambient electrical potential at the ground surface or in boreholes. When the electrokinetic effect is the dominant contribution, the resulting signal is called the streaming potential and contains information about groundwater fluxes that can be useful for calibration of groundwater flow models. The streaming potential forward equation was implemented in the HydroGeoSphere model, which simulates 3D groundwater flow and solute transport in porous media, including fractured geological formations. HydroGeoSphere is able to calculate the streaming potential given a distribution of Darcy velocity and electrical resistivity. Since groundwater flow modelling relies on a conceptual model, prior information on the distribution of the geological units and hydraulic conductivity at the site is mandatory. However, this information is often scarce or missing. In this work, we use the electrical resistivity tomography (ERT) and the SP methods as an additional source of information for building the groundwater flow model. ERT is used to identify the location of fractured zones in a fractured and karstified calcareous aquifer of South Belgium. The SP signal is used with PEST in order to calibrate the groundwater flow model and better constrain the hydraulic conductivity of the fractured zones.
Research Center/Unit :
Université de Liège - Département ArGEnCo - GEO³ - Geophysique Appliquée
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Robert, Tanguy ;  Université de Liège - ULiège > Département Argenco : Secteur GEO3 > Géophysique appliquée
Therrien, René;  Université Laval > Département de géologie et de génie géologique
Lemieux, Jean-Michel;  Université Laval > Département de géologie et de génie géologique
Nguyen, Frédéric ;  Université de Liège - ULiège > Département Argenco : Secteur GEO3 > Géophysique appliquée
Language :
English
Title :
Improving Groundwater Flow Model Conceptualisation and Calibration with ERT and Self-potential Methods
Alternative titles :
[fr] Amélioration de la conceptualisation et de la calibration de modèle d'écoulement des eaux souterraines par les méthodes de tomographie de résistivité électrique et de potentiel spontané
Publication date :
14 September 2011
Event name :
Near Surface 2011 – 17th European Meeting of Environmental and Engineering Geophysics
Event organizer :
EAGE - European Association of Geoscientists & Engineers
Event place :
Leicester, United Kingdom
Event date :
du 12 septembre 2011 au 14 septembre 2011
Audience :
International
Main work title :
EarthDoc - Near Surface 2011 – 17th European Meeting of Environmental and Engineering Geophysics
Peer reviewed :
Peer reviewed
Name of the research project :
Identification, caractérisation et suivi géophysique des écoulements préférentiels des eaux souterraines en milieu fracturé
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Commentary :
EarthDoc is an online publication of EAGE
Available on ORBi :
since 16 September 2011

Statistics


Number of views
106 (11 by ULiège)
Number of downloads
8 (1 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0

Bibliography


Similar publications



Contact ORBi