[en] Finite element (FE) models accurately compute the mechanical response of bone and bone-like materials when the models include their detailed microstructure. In order to simulate non-linear behavior, which currently is only feasible at the expense of extremely high computational costs, coarser models can be used if the local morphology has been linked to the apparent mechanical behavior. The aim of this paper is to implement and validate such a constitutive law. This law is able to capture the non-linear structural behavior of bone-like materials through the use of fabric tensors. It also allows for irreversible strains using an elastoplastic material model incorporating hardening. These features are expressed in a constitutive law based on the anisotropic continuum damage theory coupled with isotropic elastoplasticity in a finite strains framework. This material model was implemented into Metafor, a non-linear FE software. The implementation was validated against experimental data of cylindrical samples subjected to compression. Three materials with bone-like microstructure were tested : aluminum foams of variable density (ERG, Oakland, CA), PLA (polylactic acid) foam (CERM, University of Liège) and cancellous bone tissue of a deer antler (Faculty of Veterinary Medicine, University of Liège).
Mengoni, Marlène ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Voide, Romain; Eidgenössische Technische Hochschule Zurich - ETH > Institute for Biomechanics
de Bien, Charlotte ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Procédés et développement durable
Freichels, Hélène; Université de Liège - ULiège > Département de chimie (sciences) > Centre d'études et de rech. sur les macromolécules (CERM)
Jérôme, Christine ; Université de Liège - ULiège > Département de chimie (sciences) > Centre d'études et de rech. sur les macromolécules (CERM)
Léonard, Angélique ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Procédés et développement durable
Toye, Dominique ; Université de Liège - ULiège > Département de chimie appliquée > Génie de la réaction et des réacteurs chimiques
van Lenthe, Gerrit Hendrik; Katholieke Universiteit Leuven - KUL > Department of Mechanical Engineering > Biomechanics and Engineering Design Section - BMGO
Müller, Ralph; Eidgenössische Technische Hochschule Zurich - ETH > Institute for Biomechanics
Ponthot, Jean-Philippe ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Language :
English
Title :
A non-linear homogeneous model for bone-like materials under compressive load.
Publication date :
February 2012
Journal title :
International Journal for Numerical Methods in Biomedical Engineering
Cowin SC, Hegedus DH. Bone remodeling I: theory of adaptive elasticity. Journal of Elasticity 1976; V6(3):313-326. DOI: 10.1115/1.3138584.
Cowin SC. Tissue growth and remodeling. Annual Review of Biomedical Engineering 2004; 6:77-107. DOI:10.1146/annurev.bioeng.6.040803.140250.
Roberts WE, Huja S, Roberts JA. Bone modeling: biomechanics, molecular mechanisms, and clinical perspectives. Seminars in Orthodontics 2004; 10(2):123-161. DOI: 10.1053/sodo.2000.8083.
Beaupré GS, Orr TE, Carter DR. An approach for time-dependent bone modeling and remodeling-application: a preliminary remodeling simulation. Journal of Orthopedic Research 1990; 8(5):662-670. DOI:10.1002/jor.1100080507.
Carter D, Orr T, Fyhrie D. Relationships between loading history and femoral cancellous bone architecture. Journal of Biomechanics 1989; 22(3):231-244. DOI:10.1016/0021-9290(89)90091-2.
Huiskes R, Weinans H, Grootenboer H, Dalstra M, Fudala B, Slooaff T. Adaptive bone-remodeling theory applied to prosthetic-design analysis. Journal of Biomechanics 1987; 20(11-12):1135-1150. DOI: 10.1016/0021-9290(87)90030-3.
Beaupré GS, Orr TE, Carter DR. An approach for time-dependent bone modeling and remodeling-theoretical development. Journal of Orthopedic Research 1990; 8(5):651-661. DOI: 10.1002/jor.1100080506.
Cowin SC. Wolaff's law of trabecular architecture at remodelling equilibrium. Journal of Biomechanical Engineering 1986; 108:83-88. DOI: 10.1115/1.3138584.
Jacobs CR, Simo JC, Beaupre GS, Carter DR. Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations. Journal of Biomechanics 1997; 30(6):603-613. DOI:10.1016/S0021-9290(96)00189-3.
Doblaré M, García JM. Anisotropic bone remodelling model based on a continuum damage-repair theory. Journal of Biomechanics 2002; 35(1):1-17. DOI:10.1016/S0021-9290(01)00178-6.
Keyak JH. Improved prediction of proximal femoral fracture load using nonlinear finite element models. Medical Engineering and Physics 2001; 23(3):165-173. DOI: 10.1016/S1350-4533(01)00045-5.
Chevalier Y, Pahr D, Zysset PK. The role of cortical shell and trabecular fabric in finite element analysis of the human vertebral body. Journal of Biomechanical Engineering 2009; 131(11):111003-1-111003-12. DOI: 10.115/1.3212097.
Besdo S. Determination of dynamically adapting anisotropic material properties of bone under cyclic loading. Journal of Biomechanics 2011; 44(2):272-276. DOI: 10.1016/j.jbiomech.2010.10.005.
Gupta A, Bayraktar HH, Fox JC, Keaveny TM, Papadopoulos P. Constitutive modeling and algorithmic implementation of a plasticity-like model for trabecular bone structures. Computational Mechanics 2007; 40(1):61-72. DOI:10.1007/s00466-006-0082-5.
Garcia D, Zysset PK, Charlebois M, Curnier A. A three-dimensional elastic plastic damage constitutive law for bone tissue. Biomechanics and Modeling in Mechanobiology 2009; 8(2):149-165. DOI:10.1007/s10237-008-0125-2.
Charlebois M, Jirásek M, Zysset P. A nonlocal constitutive model for trabecular bone softening in compression. Biomechanics and Modeling in Mechanobiology 2010; 9:597-611. DOI: 10.1007/s10237-010-0200-3.
Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM. High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. Journal of Biomechanics 2000; 33(12):1575-1583. DOI:10.1016/S0021-9290(00)00149-4.
Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. Journal of Biomechanics 2004; 37(1):27-35. DOI:10.1016/S0021-9290(03)00257-4.
Bessho M, Ohnishi I, Matsumoto T, Ohashi S, Matsuyama J, Tobita K, Kaneko M, Nakamura K. Prediction of proximal femur strength using a CT-based nonlinear finite element method: diafferences in predicted fracture load and site with changing load and boundary conditions. Bone 2009; 45(2):226-231. DOI:10.1016/j.bone.2009.04.241.
Christen D, Webster D, Müller R. Multiscale modelling and nonlinear finite element analysis as clinical tools for the assessment of fracture risk. Philosophical Transactions of The Royal Society A 1920; 368:2653-2668. DOI:10.1098/rsta.2010.0041.
Verhulp E, van Rietbergen B, Müller R, Huiskes R. Indirect determination of trabecular bone eaffective tissue failure properties using micro-finite element simulations. Journal of Biomechanics 2008; 41(7):1479-1485. DOI: 10.1016/j.jbiomech.2008.02.032.
García JM, Doblaré M, Cegonino J. Bone remodelling simulation: a tool for implant design. Computational Materials Science 2002; 25(1-2):100-114. DOI:10.1016/S0927-0256(02)00254-9.
Mengoni M, Ponthot JP. Isotropic continuum damage/repair model for alveolar bone remodeling. Journal of Computational and Applied Mathematics 2010; 234:2036-2045. DOI: 10.1016/j.cam.2009.08.061.
Cowin SC, Hart RT, Balser JR, Kohn DH. Functional adaptation in long bones establishing in vivo values for surface remodeling rate coeffi{ligature}cients. Journal of Biomechanics 1985; 18(9):665-684. DOI:10.1016/0021-9290(85)90022-3.
Lemaitre J, Desmorat R. Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. Springer, 2005.
Desmorat R, Otin S. Cross-identification isotropic/anisotropic damage and application to anisothermal structural failure. Engineering Fracture Mechanics 2008; 75:3446-3463. DOI:10.1016/j.engfracmech.2007.05.011.
Jeunechamps PP. Simulation numérique, à l'aide d'algorithmes thermomécaniques implicites, de matériaux endommageables pouvant subir de grandes vitesses de déformation. Application aux structures aéronautiques soumises à impact, Phd thesis (in French), University of Liège (Belgium), School of Engineering, Aerospace and Mechanics Department, 2008.
Metafor. A large strain finite element code, 2011. LTAS - MN2L - University of Liège, .
Ponthot JP. Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes. International Journal of Plasticity 2002; 18:91-126. DOI: 10.1016/S0749-6419(00)00097-8.
Gibson I, Ashby M. Cellular Solids: Structure and Properties. Cambridge University Press: Cambridge, 1999.
Carter D, Hayes W, Schurman D. Fatigue life of compact bone-II. Eaffects of microstructure and density. Journal of Biomechanics 1976; 9(4):211-214, IN1-IN3, 215-218. DOI: 10.1016/0021-9290(76)90006-3.
Nazarian A, Müller R. time-lapsed microstructural imaging of bone failure behavior. Journal of Biomechanics 2004; 37(1):55-65. DOI: 10.1016/S0021-9290(03)00254-9.
de Giorgi M, Carofalo A, Dattoma V, Nobile R, Palano F. Aluminium foams structural modelling. Computers and Structures 2010; 88(1-2):25-35. DOI:10.1016/j.compstruc.2009.06.005.
Bart-Smith H, Bastawros AF, Mumm DR, Evans AG, Sypeck DJ, Wadley HNG. Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping. Acta Materialia 1998; 46(10):3583-3592. DOI: 10.1016/S1359-6454(98)00025-1.
ASM Handbook Volume 02: Properties and Selection: Nonferrous Alloys and Special-purpose Materials, 10th edition. ASM International, 1990.
Andrews E, Sanders W, Gibson LJ. Compressive and tensile behaviour of aluminum foams. Materials Science and Engineering A 1999; 270(2):113-124. DOI:10.1016/S0921-5093(99)00170-7.
Maquet V, Martin D, Scholtes F, Franzen R, Schoenen J, Moonen G, Jérôme R. Poly(d, l-lactide) foams modified by poly(ethylene oxide)-block-poly(d, l-lactide) copolymers and a-FGF: in vitro and in vivo evaluation for spinal cord regeneration. Biomaterials 2001; 22(10):1137-1146. DOI: 10.1016/S0142-9612(00)00357-4.
Jonoobi M, Harun J, Mathew AP, Oksman K. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Composites Science and Technology 2010; 70(12):1742-1747. DOI:10.1016/j.compscitech.2010.07.005.
Milan JL, Planell JA, Lacroix D. Computational modelling of the mechanical environment of osteogenesis within a polylactic acid-calcium phosphate glass scaaffold. Biomaterials 2009; 30(25):4219-4226. DOI: 10.1016/j.biomaterials.2009.04.026.
Léonard A, Guiot L, Pirard JP, Crine M, Balligand M, Blacher S. non-destructive characterization of deer antlers by X-ray microtomography coupled with image analysis. Journal of Microscopy 2007; 225(3):258-263. DOI:10.1111/j.1365-2818.2007.01740.x.
Crigel MH, Balligand M, Heinen E. Les bois de cerf: revue de littérature scientifique. Annales de Médecine Vétérinaire 2001; 145(1):25-38.
Akhtar R, Daymond MR, Almer JD, Mummery PM. Elastic strains in antler trabecular bone determined by synchrotron X-ray diaffraction. Acta Biomaterialia 2008; 4(6):1677-1687. DOI: 10.1016/j.actbio.2008.05.008.
Chen PY, Stokes A, McKittrick J. Comparison of the structure and mechanical properties of bovine femur bone and antler of the north american elk (cervus elaphus canadensis). Acta Biomaterialia 2009; 5(2):693-706. DOI: 10.1016/j.actbio.2008.09.011.
Currey J. Strain rate dependence of the mechanical properties of reindeer antler and the cumulative damage model of bone fracture. Journal of Biomechanics 1989; 22(5):469-475. DOI: 10.1016/0021-9290(89)90207-8.
Krauss S, Fratzl P, Seto J, Currey JD, Estevez JA, Funari SS, Gupta HS. Inhomogeneous fibril stretching in antler starts after macroscopic yielding indication for a nanoscale toughening mechanism. Bone 2009; 44(6):1105-1110. DOI:10.1016/j.bone.2009.02.009.
Keaveny TM, Hoaffmann PF, Singh M, Palermo L, Bilezikian JP, Greenspan SL, Black DM. Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT scans. Journal of Bone and Mineral Research 2008; 23(12):1974-1982. DOI: 10.1359/jbmr.080805.
Varga P, Baumbach S, Pahr D, Zysset PK. Validation of an anatomy-specific finite element model of colle's fracture. Journal of Biomechanics 2009; 42:1726-1731. DOI: 10.1016/j.jbiomech.2009.04.017.