NOTICE: this is the author's version of a work that was accepted for publication in Computer Methods in Applied Mechanics and Engineering. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computer Methods in Applied Mechanics and Engineering 200:45-46, 2011, 3223-3241, 10.1016/j.cma.2011.07.008
All documents in ORBi are protected by a user license.
Discontinuous Galerkin method; shells; Kirchhoff-Love; finite-elements; fracture mechanics; cohesive element
Abstract :
[en] In order to model fracture, the cohesive zone method can be coupled in a very efficient way with the Finite Element method. Nevertheless, there are some drawbacks with the classical insertion of cohesive elements. It is well known that, on one the hand, if these elements are present before fracture there is a modification of the structure stiffness, and that, on the other hand, their insertion during the simulation requires very complex implementation, especially with parallel codes. These drawbacks can be avoided by combining the cohesive method with the use of a discontinuous Galerkin formulation. In such a formulation, all the elements are discontinuous and the continuity is weakly ensured in a stable and consistent way by inserting extra terms on the boundary of elements. The recourse to interface elements allows to substitute them by cohesive elements at the onset of fracture.
The purpose of this paper is to develop this formulation for Kirchhoff-Love plates and shells. It is achieved by the establishment of a full DG formulation of shell combined with a cohesive model, which is adapted to the special thickness discretization of shell formulation. In fact, this cohesive model is applied on resulting reduced stresses which are the basis of thin structures formulations.
Finally, numerical examples demonstrate the efficiency of the method.
Dugdale D.S. Yielding of steel sheets containing slits. J. Mech. Phys. Solids 1960, 8(2):100-104. 0022-5096.
Barenblatt G. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture 1962, vol. 7. Elsevier, pp. 55-129.
Camacho G.T., Ortiz M. Computational modelling of impact damage in brittle materials. Int. J. Solids Struct. 1996, 33(20-22):2899-2938. 0020-7683.
Anvari M., Liu J., Thaulow C. Dynamic ductile fracture in aluminum round bars: experiments and simulations. Int. J. Fract. 2007, 143(4):317-332. http://dx.doi.org/10.1007/s10704-007-9062-9.
Areias P.M.A., Song J.H., Belytschko T. Analysis of fracture in thin shells by overlapping paired elements. Comput. Methods Appl. Mech. Engrg. 2006, 195(41-43):5343-5360. 0045-7825.
Cirak F., Ortiz M., Pandolfi A. A cohesive approach to thin-shell fracture and fragmentation. Comput. Methods Appl. Mech. Engrg. 2005, 194(21-24):2604-2618. 0045-7825.
Molinari J.F., Gazonas G., Raghupathy R., Rusinek A., Zhou F. The cohesive element approach to dynamic fragmentation: the question of energy convergence. Int. J. Numer. Methods Engrg. 2007, 69(3):484-503. http://dx.doi.org/10.1002/nme.1777.
Pandolfi A., Krysl P., Ortiz M. Finite element simulation of ring expansion and fragmentation: The capturing of length and time scales through cohesive models of fracture. Int. J. Fract. 1999, 95(1):279-297. http://dx.doi.org/10.1023/A:1018672922734, 1097-0207.
Scheider I., Brocks W. Simulation of cup-cone fracture using the cohesive model. Engrg. Fract. Mech. 2003, 70(14):1943-1961. 0013-7944.
Settgast R.R., Rashid M.M. Continuum coupled cohesive zone elements for analysis of fracture in solid bodies. Engrg. Fract. Mech. 2009, 76(11):1614-1635. 0013-7944, 10.1016/j.engfracmech.2009.02.02.
Seagraves A., Radovitzky R. Advances in cohesive zone modeling of dynamic fracture. Dynamic Failure of Materials and Structures 2010, Springer, US, ISBN 978-1-4419-0446-1, pp. 349-405. http://dx.doi.org/10.1007/978-1-4419-0446-1_12, A. Shukla, G. Ravichandran, Y.D. Rajapakse (Eds.).
Radovitzky R., Seagraves A., Tupek M., Noels L. A scalable 3D fracture and fragmentation algorithm based on a hybrid, discontinuous Galerkin, cohesive element method. Comput. Methods Appl. Mech. Engrg. 2011, 200:326-344.
Tvergaard V. Crack growth predictions by cohesive zone model for ductile fracture. J. Mech. Phys. Solids 2001, 49(9):2191-2207. 0022-5096.
Klein P.A., Foulk J.W., Chen E.P., Wimmer S.A., Gao H.J. Physics-based modeling of brittle fracture: cohesive formulations and the application of meshfree methods. Theor. Appl. Fract. Mech. 2001, 37(1-3):99-166. 0167-8442.
Celes W. A compact adjacencybased topological data structure for finite element mesh representation. Int. J. Numer. Methods Engrg. 2005, 64(11):1529-1556. 0029-5981.
Zhang Z.J., Paulino G.H., Celes W. Extrinsic cohesive modelling of dynamic fracture and microbranching instability in brittle materials. Int. J. Numer. Methods Engrg. 2007, 72(8):893-923. http://dx.doi.org/10.1002/nme.2030.
Mota A., Knap J., Ortiz M. Fracture and fragmentation of simplicial finite element meshes using graphs. Int. J. Numer. Methods Engrg. 2008, 73(11):1547-1570. http://dx.doi.org/10.1002/nme.2135.
Dooley I., Mangala S., Kale L., Geubelle P. Parallel simulations of dynamic fracture using extrinsic cohesive elements. J. Sci. Comput. 2009, 39(1):144-165.
Perales F., Bourgeois S., Chrysochoos A., Monerie Y. Two field multibody method for periodic homogenization in fracture mechanics of nonlinear heterogeneous materials. Engrg. Fract. Mech. 2008, 75(11):3378-3398. 0013-7944.
V. Acary, Y. Monerie, V. Acary, Y. Monerie, A.V., et al., Nonsmooth fracture dynamics using a cohesive zone approach, Tech. Rep., INRIA, 2006. http://hal.inria.fr/inria-00110560/en/.
Abedi R., Hawker M.A., Haber R.B., Matouscaron K. An adaptive spacetime discontinuous Galerkin method for cohesive models of elastodynamic fracture. Int. J. Numer. Methods Engrg. 2010, 81(10):1207-1241. http://dx.doi.org/10.1002/nme.2723.
Mergheim J., Kuhl E., Steinmann P. A hybrid discontinuous Galerkin/interface method for the computational modelling of failure. Commun. Numer. Methods Engrg. 2004, 20(7):511-519. http://dx.doi.org/10.1002/cnm.689.
Prechtel M., Ronda P., Janisch R., Hartmaier A., Leugering G., Steinmann P., Stingl M. Simulation of fracture in heterogeneous elastic materials with cohesive zone models. Int. J. Fract. 2011, 168:15-29. http://dx.doi.org/10.1007/s10704-010-9552-z, 0376-9429.
Moës N., Dolbow J., Belytschko T. A finite element method for crack growth without remeshing. Int. J. Numer. Methods Engrg. 1999, 46(1):131-150. 1097-0207.
Moës N., Belytschko T. Extended finite element method for cohesive crack growth. Engrg. Fract. Mech. 2002, 69(7):813-833. 0013-7944.
BTchet E., Minnebo H., Moës N., Burgardt B. Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Int. J. Numer. Methods Engrg. 2005, 64(8):1033-1056. http://dx.doi.org/10.1002/nme.1386, 1097-0207, 10.1002/nme.1386.
Mohammadi S. Frontmatter 2008, Blackwell Publishing Ltd., pp. i-xvii, doi: 10.1002/9780470697795.fmatter, ISBN 9780470697795. http://dx.doi.org/10.1002/9780470697795.fmatter.
Larsson R., Mediavilla J., Fagerstrom M. Dynamic fracture modeling in shell structures based on XFEM. Int. J. Numer. Meth. Engrg. 2010, http://dx.doi.org/10.1002/nme.3086, 1097-0207.
M. Duflot, E. Wyart, F. Lani, P. Martiny, S. Sagnier, Application of XFEM to multi-site crack propagation, Engrg. Fract. Mech. submitted for publication.
Becker G., Noels L. A fracture framework for Euler-Bernoulli beams based on a full discontinuous Galerkin formulation/extrinsic cohesive law combination. Int. J. Numer. Methods Engrg. 2011, 85(10):1227-1251. http://dx.doi.org/10.1002/nme.3008, 1097-0207, 10.1002/nme.3008.
Engel G., Garikipati K., Hughes T.J.R., Larson M.G., Mazzei L., Taylor R.L. Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Engrg. 2002, 191(34):3669-3750. 0045-7825.
Hansbo P., Larson M.G. A discontinuous Galerkin method for the plate equation. Calcolo 2002, 39(1):41-59. http://dx.doi.org/10.1007/s100920200001.
Wells G.N., Dung N.T. A C0 discontinuous Galerkin formulation for Kirchhoff plates. Comput. Methods Appl. Mech. Engrg. 2007, 196(35-36):3370-3380. 0045-7825.
Noels L., Radovitzky R. A new discontinuous Galerkin method for Kirchhoff-Love shells. Comput. Methods Appl. Mech. Engrg. 2008, 197(33-40):2901-2929. 0045-7825.
Noels L. A discontinuous Galerkin formulation of non-linear Kirchhoff-Love shells. Int. J. Numer. Methods Engrg. 2009, 78(3):296-323. http://dx.doi.org/10.1002/nme.2489, 1097-0207.
Dung N., Wells G. Geometrically nonlinear formulation for thin shells without rotation degrees of freedom. Comput. Methods Appl. Mech. Engrg. 2008, 197:2778-2788. http://dx.doi.org/10.1016/j.cma.2008.01.001.
Simo J.C., Fox D.D. On stress resultant geometrically exact shell model. Part I: Formulation and optimal parametrization. Comput. Methods Appl. Mech. Engrg. 1989, 72(3):267-304.
Simo J.C., Fox D.D., Rifai M.S. On a stress resultant geometrically exact shell model. Part II: The linear theory; computational aspects. Comput. Methods Appl. Mech. Engrg. 1989, 73(1):53-92.
Noels L., Radovitzky R. An explicit discontinuous Galerkin method for non-linear solid dynamics: Formulation, parallel implementation and scalability properties. Int. J. Numer. Methods Engrg. 2008, 74(9):1393-1420. http://dx.doi.org/10.1002/nme.2213, 1097-0207.
Arnold D.N., Brezzi F., Cockburn B., Marini L.D. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 2002, 39(5):1749-1779. http://www.jstor.org/stable/4101034, 00361429.
Lew A., Neff P., Sulsky D., Ortiz M. Optimal BV estimates for a discontinuous Galerkin method for linear elasticity. Appl. Math. Res. Express 2004, 2004(3):73-106. http://amrx.oxfordjournals.org/cgi/content/abstract/2004/3/73%.
Noels L., Radovitzky R. A general discontinuous Galerkin method for finite hyperelasticity. Formulation and numerical applications. Int. J. Numer. Methods Engrg. 2006, 68(1):64-97. http://dx.doi.org/10.1002/nme.1699, 1097-0207.
Eyck A.T., Lew A. Discontinuous Galerkin methods for non-linear elasticity. Int. J. Numer. Methods Engrg. 2006, 67(9):1204-1243. http://dx.doi.org/10.1002/nme.1667, 1097-0207.
Noels L., Radovitzky R. Alternative approaches for the derivation of discontinuous Galerkin methods for nonlinear mechanics. J. Appl. Mech. 2007, 74(5):1031-1036. http://link.aip.org/link/?AMJ/74/1031/1.
A. Lew, A. Eyck, R. Rangarajan, Some applications of discontinuous galerkin methods in solid mechanics, in: IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media, 2008, pp. 227-236.
Ortiz M., Pandolfi A. Finite-deformation irreversible cohesive elements for three-dimensional crack propagation analysis. Int. J. Numer. Methods Engrg. 2000, 44:1244-1267.
Corigliano A., Cacchione F., Frangi A., Zerbini S. Numerical modelling of impact rupture in polysilicon microsystems. Comput. Mech. 2008, 42:251-259. http://dx.doi.org/10.1007/s00466-007-0231-5, 0178-7675, 10.1007/s00466-007-0231-5.
Li H., Chandra N. Analysis of crack growth and crack-tip plasticity in ductile materials using cohesive zone models. Int. J. Plasticity 2003, 19(6):849-882. 0749-6419.
Pandolfi A., Ortiz M. An efficient adaptive procedure for three-dimensional fragmentation simulations. Engrg. Comput. 2002, 18(2):148-159. http://dx.doi.org/10.1007/s003660200013.
Papoulia K.D., Sam C.-H., Vavasis S.A. Time continuity in cohesive finite element modeling. Int. J. Numer. Methods Engrg. 2003, 58(5):679-701. http://dx.doi.org/10.1002/nme.778.
Zavattieri P. Modeling of crack propagation in thin-walled structures. Mec. Comput. XXIII 2004, 209-228.
Geuzaine C., Remacle J.-F. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Engrg. 2009, 79(11):1309-1331. http://dx.doi.org/10.1002/nme.2579.
S. Toledo, D. Chen, V. Rotkin, TAUCS Web page, 2003. http://www.tau.ac.il/stoledo/taucs/.
S. Toledo, D. Chen, V. Rotkin, TAUCS: A Library of Sparse Linear Solvers, Tech. Rep. version 2.2, Tel-Aviv University, 2003.
S. Balay, J. Brown, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc Web page, 2011. http://www.mcs.anl.gov/petsc.
S. Balay, J. Brown,, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc Users Manual, Tech. Rep. ANL-95/11 - Revision 3.1, Argonne National Laboratory, 2010.
Balay S., Gropp W.D., McInnes L.C., Smith B.F. Efficient management of parallelism in object oriented numerical software libraries. Modern Software Tools in Scientific Computing 1997, 163-202. Birkhäuser Press. E. Arge, A.M. Bruaset, H.P. La ngtangen (Eds.).
Hulbert G.M., Chung J. Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Comput. Methods Appl. Mech. Engrg. 1996, 137(2):175-188. http://www.sciencedirect.com/science/article/B6V29-3WFNRDY-5/2/2ec79b924e3dd1b9231ffe40c6a40306, 10.1016/S0045-7825(96)01036-5.
Zavattieri P.D. Modeling of Crack Propagation in Thin-Walled Structures Using a Cohesive Model for Shell Elements. J. Appl. Mech. 2006, 73(6):948-958. http://link.aip.org/link/?AMJ/73/948/1.
Zhou F., Molinari J.-F. Stochastic fracture of ceramics under dynamic tensile loading. Int. J. Solids Struct. 2004, 41(22-23):6573-6596. http://www.sciencedirect.com/science/article/pii/S00207683040%02562, 0020-7683, 10.1016/j.ijsolstr.2004.05.029.