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Context of cohesive approach

* Very appealing with finite element method

* |deally

— Consistent

— Easy implementation (//)
» Two classical methods

— Intrinsic
— Extrinsic
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Context of cohesive approach

e |ntrinsic methods
— Cohesive law

t
‘ Initial slope

Gmax

G

—

o

+ Easy implementation: cohesive element inserted at beginning

— Not consistent: initial slope modifies stiffness structure
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Context of cohesive approach

o EXxtrinsic methods
— Cohesive law

“A

Gmax

G

+ Consistent

— Complex implementation: dynamic mesh modification

0 IO
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Consistent without mesh modification ?

* Discontinuous Galerkin (DG) formulation
— Discontinuous tests functions at interfaces

= Continuous Galerkin Discontinuous Galerkin
X | X
@1) (@ (a+1) | (a-1)(a-1)*(a) (a)* (a+1)(a+1)*

— Consistency at interface

No fracture Switch when Fracture
fracture
crtiterion is
reached

DG terms ensure continuity =3 EXtrinsic cohesive element
Easy implementation
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DG / Extrinsic cohesive law combination

« Application to 3D cases
[Radovitzky, Seagraves, Tupek &
Noels CMAME 2010]

Max Principal Stress (Pa)
ils-rCIﬁ '8-31-0‘8 'rls-iﬂ? .

[

Rigid Sphere
radius 7;
velocity [ L/2
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DG / Extrinsic cohesive law combination

« Application to 3D cases
[Radovitzky, Seagraves, Tupek &
Noels CMAME 2010]

— Scalable approach
Scaled speedup
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« Extension to thin bodies (beam, plate & shell) ?
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DG Kirchhoff-Love shell formulation

« Conservation equations
— Linear momentum 10‘1) —V - -0 = 0

— Angular momentum @AV o= P A(

* Integration on thickness

— Linear momentum PP —

1
— Angular momentum 7(37’” ), —l+Xt= 0
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DG Kirchhoff-Love shell formulation

« EXxpression in term of resultant stresses

1 hmax
— Stress Vector o _ }/ rgdet (V@) de®
h*nlin
1 hmax
— Torque Vector o — —,t/\/ Sagodet (V) de® =t Am®
j h'min
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DG Kirchoff-Love shell formulation

Thin bodies C! continuity required
— Test functions

C9DG formulation DG formulation
[Noels & Radovitzky, CMAME 2008] [Becker & Noels, [INME 2011]
k=) i=)
/ ~ X /Extensian / SN
X
@l (@ (at+l) ‘ (@-1)y(a-1)*(a) (@* (a+l) (a+1)*

New DG interface terms

— Obtained as in literature (consistency, compatibility and
stability)
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DG Kirchhoff-Love shell formulation

 Pinched open hemisphere

P=0 [N]

P: O [N] 20 -0 Yg 12 bi—quad. el DG
..... 8 x,, 12 bi-quad. el DG
-8 ¥, 8 bi-cubic el DG
8x,, 8hbi-cubic el. DG
o o Xy Areias et al. 2005

E 10l| ¢ —OVg Areias etal. 2005 /4_.—-4—
Y]
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DG Kirchhoff-Love shell formulation

Inched open hemisphere
P= 400 [N]

P= 400 [N] 20 -3y, 12b-quad. ¢l DG

,,,,, 8 X,, 12 bi-quad. el DG
-8 ¥, 8 bi-cubic el DG
8x,, 8hbi-cubic el. DG

o o Xy Areias et al. 2005

E 10l| ¢ —OVg Areias etal. 2005 /4_.—-4—
Y]

15}

5/
g Qe - IR - TR - |
P= 400 [N] |
P (N)
P= 400 [N]
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Extrinsic cohesive law for shell

« Main problem: through the thickness crack propagation
— No element on thickness

— No fracture in compression

— Pure Bending Mo I

Tension
Compression

— How to move the neutral axis ?

T | N — . ___| Discontinuity
-7 Continuity (Computation ?)
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Extrinsic cohesive law for shell

« Shell equations are integrated on thickness

« Same for cohesive tensions

t A
o

>
)

Integration

on thicknesi

>}

— How to combine reduced stress (N) and reduced torque (M) ?

« Examine beam case first
— Only mode |

e 2011
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Extrinsic cohesive law for beam

* Energy released = hG,
* Pure tension

A=A,
A >
¢ NoA,. 2ho.G. *
/ N(A)dA, = ~02e _ 2N0cbe g 0 A
0 2 QO'C
M A
e Pure bending _
A*=h/6 A, Mo =h?/6 o
GC \\\\
- >
A A A
Are S 6 A* 6 h?c. A
* — +— M, 1 — dA* — — ap—- hGC
[ ranaa = [T (1 ) ant = REEE S <ha
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Extrinsic cohesive law for beam

* Energy released = hG,

* Coupled case
— Obtained by superposition principle

A'=(1-m) A, +nh/6 A
— With the coupling parameter n,
__[6/hMqy
"I Ny + [6/hMo]
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Extrinsic cohesive law for beam

* Coupled case

g
> O z D>
S =)
& & .|||l o o
7 * I dIN
O VHV4v hﬁ* +UJ;1?
-] * =
L = 50 [mm)]
— Increase u, until fracture
No fracture " Full broken
Transition
2

2Eintsce (Uy)

AEint (U,) = Ejntpes (Uy) - 2Bt sce (Uy)
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Extrinsic cohesive law for beam

* Coupled case
— Geometry effect (no pre-strain)

Stable transition
AE; ., (u,) <hG,

Unstable transition
AE;., (u,) > hG,

Force [N]
Force [N]

1 _08 -06 -04 02 0 15 R 05 0

|
|
|
|
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|
|
Displacement [mm] I Displacement [mm]
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z Force [N]

Extrinsic cohesive law for beam

* Coupled case
— Pre-strain effect

4

x 10

4 08 06 04 02 O
Prescribed z displacement [mm]

Pre-strain

hG. =] 22.00

Uz pres nr AFEint || Ereleased
-2e | 1.0692 | 14.8043 || 21.98
0. 1 12.33 21.98
2e5 0.93 11.39 21.98
0.86 11.99 21.98
6e> 0.79 14.11 21.98
0.72 17.76 21.99

10e™ | 0.66
Unstable
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Extrinsic cohesive law for shell

 No mode lll
— Kirchhoff-Love assumption: out-of-plate shearing is negligible

« Applied beam model on 2 fracture modes

— Mode | : tension and bending  m—) A}"

— Mode 1I: shearing and torsion ) AE

 Combination: Camacho & Ortiz model [Camacho & Ortiz Int. J Solid
— Fracture criterion Structures  1996]

S Vo2 +B2r2 ifo>0
T L = wlol if 0 <0

— Resultant opening

——2
A™ = \/AF + 62A.;}2 with, B =K,/Kc

g E 2011 CFRAC 2011: Advances in Cohesive-element Modeling of Material Failure 21 uﬁ,itéu%



DG/ ECL Applications

 Mode | dynamic crack propagation

v=1[m/s|

HEEEEE

w = 127 [mm|]

L = 300 [mm)]

[
ap = 26 [mm)]

thickness
h =6 [mm]

] Y

v=1 [m/s]

2011

Linear full DG Kirchhoff-Love shell /ECL formulation
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DG/ ECL Applications

 Mode | dynamic crack propagation

Time: O [us]
VonMises (0/7800)
4e+07 2.7e+08 5e+08
[ . -
2011 Linear full DG Kirchhoff-Love shell /ECL formulation 23



DG/ ECL Applications

 Mode | dynamic crack propagation

Time: 12.50 [us]

VonMises (300/7800)
4e+07 2.7e+08 5e+08
. -
Linear full DG Kirchhoff-Love shell /ECL formulation 24



DG/ ECL Applications

 Mode | dynamic crack propagation

Time: 25.00 [us]

VonMises (600/7800)
4e+07 2.7e+08 5e+08
. -
Linear full DG Kirchhoff-Love shell /ECL formulation 25



DG/ ECL Applications

 Mode | dynamic crack propagation

Time: 37.50 [us]

VonMises (900/7800)
4e+07 2.7e+08 5e+08
. -
2011 Linear full DG Kirchhoff-Love shell /ECL formulation 26



DG/ ECL Applications

 Mode | dynamic crack propagation

Time: 50 [us]
VonMises (1200/7800)
4e+07 2.7e+08 5e+08
. -
B 2011 Linear full DG Kirchhoff-Love shell /ECL formulation 27



DG/ ECL Applications

 Mode | dynamic crack propagation

Time: 62.50 [us]

VonMises (1500/7800)
4e+07 2.7e+08 5e+08
. -
= 2011 Linear full DG Kirchhoff-Love shell /ECL formulation 28



DG/ ECL Applications

 Mode | dynamic crack propagation

Time: 75.00 [us]

VonMises (1800/7800)
4e+07 2.7e+08 5e+08
. -
= 2011 Linear full DG Kirchhoff-Love shell /ECL formulation 29



DG/ ECL Applications

 Mode | dynamic crack propagation

Time: 87.5 [us]

VonMises (2100/7800)
4e+07 2.7e+08 5e+08
[ . -
= 2011 Linear full DG Kirchhoff-Love shell /ECL formulation 30



DG/ ECL Applications

 Mode | dynamic crack propagation

Time: 100 [us]

VonMises (2400/7800)
4e+07 2.7e+08 5e+08
E -
2011 Linear full DG Kirchhoff-Love shell /ECL formulation 31



DG/ ECL Applications

 Mode | dynamic crack propagation

Time: 112.50 [us]

VonMises (2700/7800)
4e+07 2.7e+08 5e+08
E - .
. 2011 Linear full DG Kirchhoff-Love shell /ECL formulation 32



DG/ ECL Applications

 Mode | dynamic crack propagation

Time: 125.00 [us]

VonMises (3000/7800)
4e+07 2.7e+08 5e+08
E -
= 2011 Linear full DG Kirchhoff-Love shell /ECL formulation 33



DG/ ECL Applications

 Mode | dynamic crack propagation

Time: 137.50 [us]

VonMises (3300/7800)
4e+07 2.7e+08 5e+08
N -
- 2011 Linear full DG Kirchhoff-Love shell /ECL formulation 34



DG/ ECL Applications

 Mode | dynamic crack propagation

Time: 150.00 [us]

VonMises (3600/7800)

4e+07 2.7e+08 5e+08
B -
e 2011 Linear full DG Kirchhoff-Love shell /ECL formulation 35



DG/ ECL Applications

 Mode | dynamic crack propagation

Time: 162.50 [us]

VonMises (3900/7800)
4e+07 2.7e+08 5e+08
E -
o 2011 Linear full DG Kirchhoff-Love shell /ECL formulation 36



DG/ ECL Applications

 Mode | dynamic crack propagation

Time: 175.00 [us]

VonMises (4200/7800)
4e+07 2.7e+08 5e+08
[ . -
T 2011 Linear full DG Kirchhoff-Love shell /ECL formulation 37



DG/ ECL Applications

 Mode | dynamic crack propagation

Time: 187.50 [us]

VonMises (4500/7800)

4e+07 2.7e+08 5e+08
E— -
% 2011 Linear full DG Kirchhoff-Love shell /ECL formulation 38



DG/ ECL Applications

 Mode | dynamic crack propagation

Time: 200.00 [us]

VonMises (4800/7800)
4e+07 2.7e+08 5e+08
. -
= 2011 Linear full DG Kirchhoff-Love shell /ECL formulation 39



DG/ ECL Applications

 Mode | dynamic crack propagation
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— Results 25
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DG/ ECL Applications

 Blast of pressurized cylinder with an initial crack

Von Mises
[MPa] 12
800
10
600 'E'
1]
=, 8
400 L o
?
2 %
4_
0 a4
FEra 2.J . .
0 200 400 600 800 1000
time [u s]
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DG/ ECL Applications

Blast of pressurized cylinder with an initial crack

[IMPa]
800

I 600
400

I 200
0

Von Mises

0. [ps]

2011 Linear full DG Kirchhoff-Love shell /ECL formulation
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DG/ ECL Applications

« Blast of pressurized cylinder with an initial crack
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DG/ ECL Applications

« Blast of pressurized cylinder with an initial crack

[MPa]
800

600
400
200

0

Von Mises

N vaw,
VAN
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DG/ ECL Applications

« Blast of pressurized cylinder with an initial crack

[IMPa]
800
600
400 ' %E :. ‘
WA qﬁ%‘aﬁ% '
WA S, -
200 %ﬂéj?&'ﬂmv/
AV, 4 _
AVQW"A'//
o Y
Von Mises &A%//
87" 161 [ps

2011 Linear full DG Kirchhoff-Love shell /ECL formulation



DG/ ECL Applications

« Blast of pressurized cylinder with an initial crack

[MPa]
800
600
B VAR R
400 KR
>
NCKS
200
0
Von Mises
180 [us]
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DG/ ECL Applications

« Blast of pressurized cylinder with an initial crack

[IMPa]
800

600

N[ #A *
AR
o YAV,

&

400

200

0
Von Mises

2011 Linear full DG Kirchhoff-Love shell /ECL formulation
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DG/ ECL Applications

« Blast of pressurized cylinder with an initial crack

[IMPa]
800

600

400

200

Von Mises

0

P

a5
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X P cr
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DG/ ECL Applications

« Blast of pressurized cylinder with an initial crack

[IMPa]
800

600
400
200

0
Von Mises

2011 Linear full DG Kirchhoff-Love shell /ECL formulation
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Conclusions

DG methods
— Easy combined with extrinsic cohesive method
— Extended to shell
— Appealing for parallelization (ongoing work)

 Cohesive with shell

— Complex modelization of through the thickness crack
— Application on resultant stresses

« Extension to large deformations

— Ductile materials ?
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DG/ ECL Applications

. . MP RLNYATAVS
 Mode | dynamic crack propagation M tv’{»{ggggg%ﬁ
)
SRR
— Result unstructured meshes 105 LSRG :
* structured ' 0 ﬁéﬂaﬁé‘%a F‘é
- - -coarse spectral radius = 1 0B ‘ﬂ!‘é‘""
A coarse spectral radius = 0.9 . m?ges i i
e thin spectral radius = 0.9 <V
= 100| O Zavattieri 2006 2 (a) No dissipation
< . IMPal | \ AT AIRERRPILR
> %4 650 Ef%%ﬁl‘i%fgxmﬂnﬁ'@%.k Vav
g . % 433 s v
b 50 °

a'A
MJ .3
’ 3
A o
*
. | | .5
(? 0.05 0.1 0.15

displacement [mm)]
— Independent of mesh

« Max relative error (thin mesh worst

path)

— 2.7% on maximal force ‘

— 4.3 % on time where F=0 () spectral radius 0.9
% 2011
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