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Context of cohesive approach

• Very appealing with finite element method

• Ideally

– Consistent

– Easy implementation (//)

• Two classical methods

– Intrinsic

– Extrinsic
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Context of cohesive approach 

• Intrinsic methods

– Cohesive law

+ Easy implementation: cohesive element inserted at beginning

– Not consistent: initial slope modifies stiffness structure  
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Initial slope



Context of cohesive approach

• Extrinsic methods

– Cohesive law

+ Consistent

– Complex implementation: dynamic mesh modification
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Consistent without mesh modification ?

• Discontinuous Galerkin (DG) formulation

– Discontinuous tests functions at interfaces

– Consistency at interface
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DG / Extrinsic cohesive law combination

• Application to 3D cases 
[Radovitzky, Seagraves, Tupek & 

Noels CMAME 2010]

2011         CFRAC 2011: Advances in Cohesive-element Modeling  of Material Failure            6



DG / Extrinsic cohesive law combination

• Application to 3D cases

– Scalable approach

• Extension to thin bodies (beam, plate & shell) ?
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[Radovitzky, Seagraves, Tupek & 

Noels CMAME 2010]



Topic

• DG Kirchhoff-Love shell formulation

• Coupling with extrinsic cohesive law (ECL)

• DG/ECL applications

• Conclusions & perspectives
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DG Kirchhoff-Love shell formulation

• Conservation equations

– Linear momentum

– Angular momentum

• Integration on thickness

– Linear momentum 

– Angular momentum
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• Expression in term of resultant stresses

– Stress Vector

– Torque Vector

DG Kirchhoff-Love shell formulation
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DG Kirchoff-Love shell formulation

• Thin bodies C1 continuity required

– Test functions

• New DG interface terms

– Obtained as in literature (consistency, compatibility and 

stability)
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[Becker & Noels, IJNME 2011]



DG Kirchhoff-Love shell formulation

• Pinched open hemisphere
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• Pinched open hemisphere

DG Kirchhoff-Love shell formulation
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Extrinsic cohesive law for shell

• Main problem: through the thickness crack propagation

– No element on thickness

– No fracture in compression

– Pure Bending

– How to move the neutral axis ?
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Extrinsic cohesive law for shell

• Shell equations are integrated on thickness

• Same for cohesive tensions

– How to combine reduced stress (N) and reduced torque (M) ?

• Examine beam case first

– Only mode I
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• Energy released = hGc 

• Pure tension

• Pure bending

Extrinsic cohesive law for beam
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• Energy released = hGc

• Coupled case

– Obtained by superposition principle

– With the coupling parameter hI

Extrinsic cohesive law for beam
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Extrinsic cohesive law for beam

• Coupled case

– Increase uz until fracture
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Extrinsic cohesive law for beam

• Coupled case

– Geometry effect (no pre-strain) 
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Stable transition
ΔEint (uz) < hGc
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ΔEint (uz) > hGc



• Coupled case

– Pre-strain effect
hGc    =   22.00
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Extrinsic cohesive law for beam
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• No mode III

– Kirchhoff-Love assumption: out-of-plate shearing is negligible

• Applied beam model on 2 fracture modes

– Mode I : tension and bending 

– Mode II: shearing and torsion

• Combination: Camacho & Ortiz model 

– Fracture criterion

– Resultant opening

Extrinsic cohesive law for shell
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[Camacho & Ortiz Int. J Solid 

Structures  1996]

with, b = KIIc/KIc



DG/ ECL Applications

• Mode I dynamic crack propagation
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• Mode I dynamic crack propagation

Time: 0 [μs]
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DG/ ECL Applications



• Mode I dynamic crack propagation

Time: 12.50 [μs]
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DG/ ECL Applications



• Mode I dynamic crack propagation

Time: 25.00 [μs]
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• Mode I dynamic crack propagation

Time: 37.50 [μs]
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• Mode I dynamic crack propagation

Time: 50 [μs]
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DG/ ECL Applications



• Mode I dynamic crack propagation

Time: 62.50 [μs]
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DG/ ECL Applications



• Mode I dynamic crack propagation

Time: 75.00 [μs]
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DG/ ECL Applications



• Mode I dynamic crack propagation

Time: 87.5 [μs]
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DG/ ECL Applications



• Mode I dynamic crack propagation

Time: 100 [μs]
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• Mode I dynamic crack propagation

Time: 112.50 [μs]
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DG/ ECL Applications



• Mode I dynamic crack propagation

Time: 125.00 [μs]
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• Mode I dynamic crack propagation

Time: 137.50 [μs]
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• Mode I dynamic crack propagation

Time: 150.00 [μs]
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• Mode I dynamic crack propagation

Time: 162.50 [μs]
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• Mode I dynamic crack propagation

Time: 175.00 [μs]
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• Mode I dynamic crack propagation

Time: 187.50 [μs]
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• Mode I dynamic crack propagation

Time: 200.00 [μs]
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DG/ ECL Applications



• Mode I dynamic crack propagation

– Results 

G =
Δ(Wext – Wint)

bhΔa
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DG/ ECL Applications

Gc



• Blast of pressurized cylinder with an initial crack
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Initial 

crack

DG/ ECL Applications



• Blast of pressurized cylinder with an initial crack
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DG/ ECL Applications

0. [ms]



• Blast of pressurized cylinder with an initial crack
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DG/ ECL Applications

99 [ms]



• Blast of pressurized cylinder with an initial crack
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DG/ ECL Applications

140 [ms]



• Blast of pressurized cylinder with an initial crack
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DG/ ECL Applications

161 [ms]



• Blast of pressurized cylinder with an initial crack
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DG/ ECL Applications

180 [ms]



• Blast of pressurized cylinder with an initial crack
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DG/ ECL Applications

189 [ms]



• Blast of pressurized cylinder with an initial crack
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DG/ ECL Applications

226 [ms]



• Blast of pressurized cylinder with an initial crack
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DG/ ECL Applications

266 [ms]



Conclusions

• DG methods

– Easy combined with extrinsic cohesive method

– Extended to shell

– Appealing for parallelization (ongoing work)

• Cohesive with shell

– Complex modelization of through the thickness crack 

– Application on resultant stresses

• Extension to large deformations

– Ductile materials ?
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• Mode I dynamic crack propagation

– Result unstructured meshes

– Independent of mesh

• Max relative error (thin mesh worst crack 

path)

– 2.7% on maximal force

– 4.3 % on time where F=0
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No dissipation 

Spectral radius 0.9 

Spectral radius 0.9 

DG/ ECL Applications


