[en] The Actinomadura R39 dd-peptidase catalyzes the hydrolysis and aminolysis of a number of small peptides and depsipeptides. Details of its substrate specificity and the nature of its in vivo substrate are not, however, well understood. This paper describes the interactions of the R39 enzyme with two peptidoglycan-mimetic substrates 3-(d-cysteinyl)propanoyl-d-alanyl-d-alanine and 3-(d-cysteinyl)propanoyl-d-alanyl-d-thiolactate. A detailed study of the reactions of the former substrate, catalyzed by the enzyme, showed dd-carboxypeptidase, dd-transpeptidase, and dd-endopeptidase activities. These results confirm the specificity of the enzyme for a free d-amino acid at the N-terminus of good substrates and indicated a preference for extended d-amino acid leaving groups. The latter was supported by determination of the structural specificity of amine nucleophiles for the acyl-enzyme generated by reaction of the enzyme with the thiolactate substrate. It was concluded that a specific substrate for this enzyme, and possibly the in vivo substrate, may consist of a partly cross-linked peptidoglycan polymer where a free side chain N-terminal un-cross-linked amino acid serves as the specific acyl group in an endopeptidase reaction. The enzyme is most likely a dd-endopeptidase in vivo. pH−rate profiles for reactions of the enzyme with peptides, the thiolactate named above, and β-lactams indicated the presence of complex proton dissociation pathways with sticky substrates and/or protons. The local structure of the active site may differ significantly for reactions of peptides and β-lactams. Solvent kinetic deuterium isotope effects indicate the presence of classical general acid/base catalysis in both acylation and deacylation; there is no evidence of the low fractionation factor active site hydrogen found previously in class A and C β-lactamases.
Research Center/Unit :
CIP - Centre d'Ingénierie des Protéines - ULiège
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Adediran, S. A.; Wesleyan University > Department of Chemistry
Kumar, Ish; Wesleyan University > Department of Chemistry
Nagarajan; wesleyan University > Chemistry
Sauvage, Eric ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Pratt, R. F.; Wesleyan department > Chemistry
Language :
English
Title :
Kinetics of Reactions of the Actinomadura R39 dd-Peptidase with Specific Substrates.
This research was supported by National Institutes of Health Grant AI-17986 (R.F.P.) and in part by the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister’s Office, Science Policy programming (IAP no. P6/19), the Fonds de la Recherche Scientifique (IISN4.4505.00, IISN4.4509.09, FRFC2.4.508.01.F, FRFC9.4.538.03.F, FRFC2.4.524.03), and the University of Lige (Fonds spciaux, Crdit classique, 2009).
Vollmer, W. and Bertsche, U. (2007) Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli Biochim. Biophys. Acta 1778, 1714-1734
Sauvage, E., Kerff, F., Terrak, M., Ayala, J. A., and Charlier, P. (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis FEMS Microbiol. Rev. 32, 234-258
Waxman, D. J. and Strominger, J. L. (1983) Penicillin-binding proteins and the mechanism of action of δ-lactam antibiotics Annu. Rev. Biochem. 52, 825-869
Pratt, R. F. (2002) Functional evolution of the serine δ-lactamase active site J. Chem. Soc. Perkin 2, 851-861
Payne, D. J., Gwynn, M. N., Holmes, D. J., and Pompliano, D. L. (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery Nat. Rev. Drug Discov. 6, 29-40
Boucher, H. W., Talbot, G. H., Bradley, J. S., Edwards, T. E., Gilbert, D., Rice, L. B., Scheld, M., Spellberg, B., and Bartlett, J. (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America Clin. Infect. Dis. 48, 1-12
Goffin, C. and Ghuysen, J.-M. (1998) Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs Microbiol. Mol. Biol. Rev. 62, 1079-1093
Pratt, R. F. (2008) Substrate specificity of bacterial dd -peptidases (penicillin-binding proteins) Cell. Mol. Life Sci. 65, 2138-2155
Anderson, J. W. and Pratt, R. F. (2000) Dipeptide binding to the extended active site of the S treptomyces R61 d -alanyl- d -alanine peptidase: the path to a specific substrate Biochemistry 39, 12200-12209
Anderson, J. W., Adediran, S. A., Charlier, P., Nguyen-Distèche, M., Frère, J.-M., Nicholas, R. A., and Pratt, R. F. (2003) On the substrate specificity of bacterial dd -peptidases: evidence from two series of peptidoglycan-mimetic peptides Biochem. J. 373, 949-955
McDonough, M. A., Anderson, J. W., Silvaggi, N. R., Pratt, R. F., Knox, J. R., and Kelly, J. A. (2002) Structures of two kinetic intermediates reveal species specificity of penicillin-binding proteins J. Mol. Biol. 322, 111-122
Silvaggi, N. R., Anderson, J. W., Brinsmade, S. R., Pratt, R. F., and Kelly, J. A. (2003) The crystal structure of a phosphonate-inhibited d -Ala- d -Ala peptidase reveals an analogue of a tetrahedral transition state Biochemistry 42, 1199-1208
Silvaggi, N. R., Josephine, H. R., Kuzin, A. P., Nagarajan, R., Pratt, R. F., and Kelly, J. A. (2005) Crystal structures of complexes between the R61 dd -peptidase and peptidoglycan-mimetic β-lactams: a non-covalent complex with a "perfect penicillin. J. Mol. Biol. 345, 521-533
Sauvage, E., Powell, A. J., Heilemann, J., Josephine, H. R., Charlier, P., Davies, C., and Pratt, R. F. (2008) Crystal structures of complexes of bacterial dd -peptidases with peptidoglycan-mimetic ligands; the substrate specificity puzzle J. Mol. Biol. 381, 383-393
Dzhekieva, L., Rocaboy, M., Kerff, F., Charlier, P., Sauvage, E., and Pratt, R. F. (2010) Crystal structure of a complex between the Actinomadura R39 dd -peptidase and a peptidoglycan-mimetic boronate inhibitor: interpretation of a transition state analogue in terms of catalytic mechanism Biochemistry 49, 6411-6419
Ghuysen, J.-M., Frère, J.-M., Leyh-Bouille, M., Coyette, J., Dusart, J., and Nguyen-Distèche, M. (1977) Use of model enzymes in determination of the mode of action of penicillins and Δ3-cephalosporins Annu. Rev. Biochem. 48, 73-101
Zhao, G.-H., Duez, C., LePage, S., Forceille, C., Rhazi, N., Klein, D., Ghuysen, J.-M., and Frère, J.-M. (1997) Site-directed mutagenesis of the Actinomadura R39 dd -peptidase Biochem. J. 327, 377-381
Sauvage, E., Herman, R., Petrella, S., Duez, C., Bouillenne, F., Frère, J.-M., and Charlier, P. (2005) Crystal structure of the Actinomadura R39 dd -peptidase reveals new domains in penicillin-binding proteins J. Biol. Chem. 280, 31249-31256
Granier, B., Duez, C., Lepange, S., Englebert, S., Dusart, J., Dideberg, O., Van Beeumen, J., Frère, J.-M., and Ghuysen, J.-M. (1992) Primary and predicted secondary structures of the Actinomadura R39 extracellular dd -peptidase, a penicillin-binding protein (PBP) related to Escherichia coli PBP4 Biochem. J. 282, 781-788
Nagarajan, R. and Pratt, R. F. (2004) Synthesis and evaluation of new substrate analogues of Streptomyces R61 dd -peptidase: dissection of a specific ligand J. Org. Chem. 69, 7472-7478
Johnson, K. A., Simpson, Z. B., and Blom, T. (2009) A new computer program for dynamic simulations and fitting of kinetic data Anal. Biochem. 387, 20-29
Kuzmic, P. (1996) Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase Anal. Biochem. 237, 260-273
Frére, J.-M., Leyh-Bouille, M., Ghuysen, J.-M., Nieto, M., and Perkins, H. R. (1976) Exocellular dd -carboxypeptidase-transpeptidases from Streptomyces Methods Enzymol. 45, 610-636
Fuad, N., Frére, J.-M., Ghuysen, J.-M., Duez, C., and Iwatsubo, M. (1974) Mode of interaction between δ-lactam antibiotics and the exocellular dd -carboxypeptidase-transpeptidase from Streptomyces R39 Biochem. J. 155, 623-629
Adediran, S. A., Deraniyagala, S. A., Xu, Y., and Pratt, R. F. (1996) δ-Secondary and solvent deuterium kinetic isotope effects on δ-lactamase catalysis Biochemistry 35, 3604-3613
Stein, R. L. (1983) Catalysis by human leukocyte elastase: substrate structural operation of the charge relay system J. Am. Chem. Soc. 105, 5111-5116
Adediran, S. A., Kumar, I., and Pratt, R. F. (2006) Deacylation transition states of a bacterial dd -peptidase Biochemistry 45, 13074-13082
Kumar, I. and Pratt, R. F. (2005) Transpeptidation reactions of a specific substrate catalyzed by the Streptomyces R61 dd -peptidase: characterization of a chromogenic substrate and acyl acceptor design Biochemistry 30, 9971-9979 (Pubitemid 41076793)
Adam, M., Damblon, C., Plaitin, B., Christiaens, L., and Frère, J.-M. (1990) Chromogenic depsipeptide substrates for δ-lactamases and penicillin-sensitive dd -peptidases Biochem. J. 270, 525-529
Jamin, M., Adam, M., Damblon, C., Christiaens, L., and Frère, J.-M. (1991) Accumulation of acyl-enzymes in dd -peptidase-catalyzed reactions with analogues of peptide substrates Biochem. J. 280, 499-506
Kumar, I. and Pratt, R. F. (2005) Transpeptidation reactions of a specific substrate catalyzed by the Streptomyces R61 dd -peptidase: the structural basis of acyl acceptor specificity Biochemistry 44, 9961-9970 (Pubitemid 41076792)
Peller, L. and Alberty, R. A. (1959) Multiple intermediates in steady state enzyme kinetics. I. The mechanism involving a single substrate and product J. Am. Chem. Soc. 81, 5907-5914
Knowles, J. R. (1976) The intrinsic pKa values of functional groups in enzymes: improper deductions from the pH-dependence of steady state parameters CRC Crit. Rev. Biochem. 4, 165-173
Cleland, W. W. (1977) Determining the chemical mechanisms of enzyme-catalyzed reactions by kinetics studies Adv. Enzymol. 45, 273-387
Hardy, L. W., Nishida, C. H., and Kirsch, J. F. (1984) Anomalous pH dependence of the reactions of carbenicillin and sulbenicillin with Bacillus cereus δ-lactamase I. Influence of the α-substituent charge on the kinetic parameters Biochemistry 23, 1288-1294
Kóczián, K., Szakács, Z., Kökösi, J., and Noszál, B. (2007) Site-specific protonation micro equilibria of penicillin and cephalosporin beta-lactam core molecules Eur. J. Pharm. Sci. 32, 1-7
Varetto, L., Frère, J.-M., Nguyen-Distèche, M., Ghuysen, J.-M., and Houssier, C. (1987) The pH dependence of the active site serine dd -peptidase of Streptomyces R61 Eur. J. Biochem. 162, 525-531
Stevanova, M. E., Tomberg, J., Olesky, M., Höltje, J.-V., Gutheil, W. G., and Nicholas, R. A. (2003) Neisseria gonorrhoeae penicillin-binding protein 3 exhibits exceptionally high carboxypeptidase and δ-lactam binding activities Biochemistry 42, 14614-14625
Stefanova, M. E., Tomberg, J., Davies, C., Nicholas, R. A., and Gutheil, W. G. (2004) Overexpression and enzymatic characterization of Neisseria gonorrhoeae penicillin-binding protein 4 Eur. J. Biochem. 271, 23-32
Thomas, B., Wang, Y., and Stein, R. L. (2001) Kinetic and mechanistic studies of penicillin-binding protein 2x from Streptococcus pneumoniae Biochemistry 40, 15811-15823
Stefanova, M. E., Davies, C., Nicholas, R. A., and Gutheil, W. G. (2009) pH, inhibitor and substrate specificity studies on Escherichia coli penicillin-binding protein 5 Biochim. Biophys. Acta 1597, 292-300
Zhang, W., Shi, Q., Meroueh, S. O., Vakulenko, S. B., and Mobashery, S. (2007) Catalytic mechanism of penicillin-binding protein 5 of Escherichia coli Biochemistry 46, 10113-10121
Adediran, S. A. and Pratt, R. F. (1999) δ-Secondary and solvent deuterium isotope effects on catalysis by the Streptomyces R61 dd -peptidase: comparisons with a structurally similar class C δ-lactamase Biochemistry 38, 1469-1477
Page, M. I., Vilanova, B., and Layland, N. J. (1995) pH dependence of and kinetic solvent isotope effects on the methanolysis and hydrolysis of β-lactams catalyzed by class C δ-lactamase J. Am. Chem. Soc. 117, 12092-12095
Korat, B., Mottl, H., and Keck, W. (1991) Penicillin-binding protein 4 of Escherichia coli: molecular cloning of the dac B gene, controlled overexpression, and alterations in murein composition Mol. Microbiol. 5, 675-684
Duez, C., Zervosen, A., Teller, N., Melkonian, R., Banzubazé, E., Bouillenne, F., Luxen, A., and Frère, J.-M. (2009) Characterization of the proteins encoded by the Bacillus subtilis yoxA-dacC operon FEMS Microbiol. Lett. 300, 42-47