Abstract :
[en] The surface chemical composition of nine strains of Bacillus subtilis was determined by X-ray photoelectron spectroscopy. Regressions between elemental concentrations and concentrations associated with different components of C1s, N1s, and O1s peaks provided a more precise validation of the procedure used for peak decomposition and allowed the assignment of the peak components to be completed or strengthened. The component of the O1s peak appearing around 531.2 eV was shown to contain a contribution of oxygen from phosphate groups (P=O, P–O−), the other contribution being due to oxygen involved in amide functions. The surface negative charge may be fully attributed to phosphate groups, despite the observation of two types of zeta potential vs pH curves. The strains exhibiting a sharp variation of the zeta potential (range of −35 to −55 mV) between pH 2 and 4.7 were characterized by a high phosphate surface concentration and by an excess (about 25%) of phosphate with respect to the sum of potassium, an exchangeable cation, and protonated nitrogen, attributed to protein or to alanine involved in teichoic acids.
Scopus citations®
without self-citations
119