This website uses cookies

The University of Liège wishes to use cookies or trackers to store and access your personal data, to perform audience measurement. Some cookies are necessary for the website to function. Cookie policy.

Paper published in a book (Scientific congresses and symposiums)
Recurrent neural network prediction of steam production in a Kraft recovery boiler
Sainlez, Matthieu; Heyen, Georges
2011In Pistikopoulos, E. N.; Georgiadis, M. C.; Kokossis, A. C. (Eds.) 21st European Symposium on Computer Aided Process Engineering (Part B)
Peer reviewed
 

Files


Full Text
Sainlez_Review.pdf
Author postprint (1.43 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
recurrent neural networks; Kraft recovery boiler; steam production
Abstract :
[en] In this paper, neural networks approaches are compared for predicting the high pressure (HP) steam flow rate from a Kraft recovery boiler. We apply two types of neural networks: a static multilayer perceptron and a dynamic Elman’s recurrent neural network. Starting from a one-day database of raw process data related to the boiler, the goal is to model and predict the next 12-hours of HP steam flow production from the boiler to the steam turbine. The results illustrate the potential of the dynamic approach in this task.
Disciplines :
Chemical engineering
Author, co-author :
Sainlez, Matthieu ;  Université de Liège - ULiège > Form.doct. sc. ingé. (chim. appl. - Bologne)
Heyen, Georges ;  Université de Liège - ULiège > Département de chimie appliquée > LASSC (Labo d'analyse et synthèse des systèmes chimiques)
Language :
English
Title :
Recurrent neural network prediction of steam production in a Kraft recovery boiler
Publication date :
2011
Event name :
ESCAPE21
Event organizer :
EFCE - European Federation of Chemical Engineering
Event place :
Chalkidiki, Greece
Event date :
May 29 - June 1, 2011
Audience :
International
Main work title :
21st European Symposium on Computer Aided Process Engineering (Part B)
Editor :
Pistikopoulos, E. N.
Georgiadis, M. C.
Kokossis, A. C.
Publisher :
Elsevier, Amsterdam, Netherlands
Edition :
First edition 2011
ISBN/EAN :
978-0-444-54298-4
Collection name :
Computer-Aided Chemical Engineering, 29
Pages :
1784-1788
Peer reviewed :
Peer reviewed
Available on ORBi :
since 27 June 2011

Statistics


Number of views
130 (7 by ULiège)
Number of downloads
8 (4 by ULiège)

Bibliography


Similar publications



Contact ORBi