This website uses cookies

The University of Liège wishes to use cookies or trackers to store and access your personal data, to perform audience measurement. Some cookies are necessary for the website to function. Cookie policy.

Profil

Sainlez Matthieu

Main Referenced Co-authors
Heyen, Georges  (11)
Lafourcade, Sébastien (2)
Absil, Pierre-Antoine (1)
Lumen, Philippe (1)
Teschendorff, Andrew E. (1)
Main Referenced Keywords
data mining (3); Kraft recovery boiler (3); Random Forests (2); steam production (2); atmospheric pollutants (1);
Main Referenced Disciplines
Chemical engineering (6)
Engineering, computing & technology: Multidisciplinary, general & others (6)
Computer science (4)
Energy (3)
Mathematics (2)

Publications (total 21)

The most downloaded
8 downloads
Sainlez, M., & Heyen, G. (2011). Recurrent neural network prediction of steam production in a Kraft recovery boiler. In E. N. Pistikopoulos, M. C. Georgiadis, ... A. C. Kokossis (Eds.), 21st European Symposium on Computer Aided Process Engineering (Part B) (First edition 2011, pp. 1784-1788). Amsterdam, Netherlands: Elsevier. https://hdl.handle.net/2268/94250

The most cited

19 citations (OpenAlex)

Sainlez, M., & Heyen, G. (2012). Comparison of supervised learning techniques for atmospheric pollutant monitoring in a Kraft pulp mill. Journal of Computational and Applied Mathematics. doi:10.1016/j.cam.2012.06.026 https://hdl.handle.net/2268/124077

Sainlez, M. (2012). Apprentissages automatiques supervisés pour le monitoring environnemental et énergétique d'une chaudière de régénération [Doctoral thesis, ULiège - Université de Liège]. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/133097

Sainlez, M., & Heyen, G. (27 January 2012). Machine learning techniques for atmospheric pollutant monitoring [Poster presentation]. PhD day ENVITAM-GEPROC, Gembloux, Belgium.

Sainlez, M., & Heyen, G. (2012). Comparison of supervised learning techniques for atmospheric pollutant monitoring in a Kraft pulp mill. Journal of Computational and Applied Mathematics. doi:10.1016/j.cam.2012.06.026
Peer Reviewed verified by ORBi

Sainlez, M. (15 November 2011). Comparison of Machine Learning techniques for atmospheric pollutant monitoring: a Kraft pulp mill case study [Paper presentation]. Fifth International Conference on Advanced COmputational Methods in ENgineering (ACOMEN 2011), Liège, Belgium.

Sainlez, M. (10 November 2011). Les réseaux de neurones artificiels dans la finance [Paper presentation]. Semaine Intégration pédagogique - HERS Libramont, Libramont, Belgium.

Sainlez, M., & Heyen, G. (November 2011). Comparison of Machine Learning techniques for atmospheric pollutant monitoring in a Kraft pulp mill [Paper presentation]. ACOMEN 2011, Liège, Belgium.

Sainlez, M., & Heyen, G. (30 May 2011). Kraft RB : recurrent neural network prediction of steam production [Poster presentation]. ESCAPE21, Chalkidiki, Greece.

Sainlez, M., Heyen, G., & Lumen, P. (27 May 2011). Approche neuronale dynamique pour la prédiction de polluants atmosphériques: application à l'industrie papetière [Paper presentation]. 43èmes Journées de Statistiques SFDS, Gammarth- Tunis, Tunisia.

Sainlez, M. (27 May 2011). Dynamic neural network approach for atmospheric pollutant prediction: A pulp mill case study [Paper presentation]. 43èmes Journées de Statistique de la SFdS, Gammarth - Tunis, Tunisia.

Sainlez, M. (30 March 2011). L'intelligence des données au service des industries [Paper presentation]. Conférence dans le cadre du Printemps des Sciences 2011, Arlon, Belgium.

Sainlez, M., & Heyen, G. (2011). Recurrent neural network prediction of steam production in a Kraft recovery boiler. In E. N. Pistikopoulos, M. C. Georgiadis, ... A. C. Kokossis (Eds.), 21st European Symposium on Computer Aided Process Engineering (Part B) (First edition 2011, pp. 1784-1788). Amsterdam, Netherlands: Elsevier.
Peer reviewed

Sainlez, M., Heyen, G., & Lafourcade, S. (2011). Supervised learning for a Kraft recovery boiler: a data mining approach with Random Forests. In D. Favrat & F. Maréchal (Eds.), ECOS 2010 Volume IV (Power plants and Industrial processes) (pp. 235).
Peer reviewed

Sainlez, M. (July 2010). Kraft recovery boiler analysis : a data mining approach [Poster presentation]. Summer School on Neural Networks in Classification, Regression and Data Mining, Porto, Portugal.

Sainlez, M., Heyen, G., & Lafourcade, S. (June 2010). Supervised learning for a Kraft recovery boiler: a data mining approach with Random Forests [Paper presentation]. ecos2010 - 23rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Lausanne, Switzerland.

Sainlez, M. (June 2010). Kraft RB : classification of relevant variables with Random Forests [Poster presentation]. ESCAPE20 European Symposium on Computer Aided Engineering, Ischia, Italy.

Sainlez, M., & Heyen, G. (2010). Recovery boiler monitoring : steam flow prediction with random forests [Poster presentation]. CAPE Forum 2010, Aachen, Germany.

Sainlez, M., & Heyen, G. (2010). Performance monitoring of an industrial boiler: classification of relevant variables with Random Forests. In S. Pierucci & G. B. Ferraris (Eds.), 20th European Symposium on Computer Aided Process Engineering – ESCAPE20 (First edition 2010, pp. 403-408). Amsterdam, Netherlands: Elsevier.
Peer reviewed

Sainlez, M. (April 2009). Gene expression data analysis using spatiotemporal blind source separation [Poster presentation]. ESANN2009 17th European Symposium on Artificial Neural Networks, Bruges, Belgium.

Sainlez, M., Absil, P.-A., & Teschendorff, A. E. (2009). Gene expression data analysis using spatiotemporal blind source separation. In M. Verleysen (Ed.), ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational Intelligence and Learning (pp. 159-163). Evere, Belgium: d-side.
Peer reviewed

Sainlez, M. (2009). Techniques avancées de data mining pour l’optimisation énergétique [Poster presentation]. Journée scientifique Inter Hautes Ecoles, Namur, Belgium.

Sainlez, M., & Heyen, G. (2008). Suivi de performances et optimisation de procédés industriels [Poster presentation]. Le Génie des Procédés au service du Développement Durable, Mons, Belgium.

Contact ORBi