Paper published in a book (Scientific congresses and symposiums)
Supervised learning for a Kraft recovery boiler: a data mining approach with Random Forests.
Sainlez, Matthieu; Heyen, Georges; Lafourcade, Sébastien
2011In Favrat, Daniel; Maréchal, François (Eds.) ECOS 2010 Volume IV (Power plants and Industrial processes)
Peer reviewed
 

Files


Full Text
ECOS_Sainlez.pdf
Author postprint (6.98 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
data mining; Random Forests; Kraft recovery boiler
Abstract :
[en] A data mining methodology, the random forests, is applied to predict high pressure steam production from the recovery boiler of a Kraft pulping process. Starting from a large database of raw process data, the goal is to identify the input variables that explain the most significant output variations and to predict the high pressure steam flow.
Disciplines :
Energy
Author, co-author :
Sainlez, Matthieu ;  Université de Liège - ULiège > Form.doct. sc. ingé. (chim. appl. - Bologne)
Heyen, Georges ;  Université de Liège - ULiège > Département de chimie appliquée > LASSC (Labo d'analyse et synthèse des systèmes chimiques)
Lafourcade, Sébastien;  PEPITe Technologies
Language :
English
Title :
Supervised learning for a Kraft recovery boiler: a data mining approach with Random Forests.
Publication date :
01 January 2011
Event name :
ECOS 2010 - 23rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems
Event organizer :
EPFL
Event place :
Lausanne, Switzerland
Event date :
June 14, 2010 – June 17, 2010
Audience :
International
Main work title :
ECOS 2010 Volume IV (Power plants and Industrial processes)
Editor :
Favrat, Daniel
Maréchal, François
ISBN/EAN :
145630318X
Pages :
235
Peer reviewed :
Peer reviewed
Available on ORBi :
since 26 June 2011

Statistics


Number of views
78 (8 by ULiège)
Number of downloads
7 (3 by ULiège)

Bibliography


Similar publications



Contact ORBi