Beckman J.S., Beckman T.W., Chen J., Marshall P.A., Freeman B.A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA. 87:1990;1620-1624.
Pryor W.A., Squadrito G.L. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am. J. Physiol. 268:1995;L699-L722.
Radi R., Peluffo G., Alvarez M.N., Naviliat M., Cayota A. Unraveling peroxynitrite formation in biological systems. Free Radic. Biol. Med. 33:2001;463-488.
Radi R., Beckman J.S., Bush K.M., Freeman B.A. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 288:1991;481-487.
Radi R., Beckman J.S., Bush K.M., Freeman B.A. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266:1991;4244-4250.
Bartlett D., Church D.F., Bounds P.L., Koppenol W.H. The kinetics of the oxidation of L-ascorbic acid by peroxynitrite. Free Radic. Biol. Med. 18:1995;85-92.
Yermilov V., Yoshie Y., Rubio J., Ohshima H. Effects of carbon dioxide/bicarbonate on induction of DNA single-strand breaks and formation of 8-nitroguanine, 8-oxoguanine and base-propenal mediated by peroxynitrite. FEBS Lett. 399:1996;67-70.
O'Donnell V.B., Eiserich J.P., Chumley P.H., Jablonsky M.J., Krishna N.R., Kirk M., Barnes S., Darley-Usmar V.M., Freeman B.A. Nitration of unsaturated fatty acids by nitric oxide-derived reactive nitrogen species peroxynitrite, nitrous acid, nitrogen dioxide, and nitronium ion. Chem. Res. Toxicol. 12:1999;83-92.
Ischiropoulos H., Zhu L., Chen J., Tsai M., Martin J.C., Smith C.D., Beckman J.S. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch. Biochem. Biophys. 298:1992;431-437.
Alvarez B., Rubbo H., Kirk M., Barnes S., Freeman B.A., Radi R. Peroxynitrite-dependent tryptophan nitration. Chem. Res. Toxicol. 9:1996;390-396.
Ramazanian M.S., Padmaja S., Koppenol W.H. Nitration and hydroxylation of phenolic compounds by peroxynitrite. Chem. Res. Toxicol. 9:1996;232-240.
Nonoyama N., Chiba K., Hisatome K., Suzuki H., Shintani F. Nitration, hydroxylation of substituted phenols by peroxynitrite. Kinetic feature and an alternative mechanism view. Tetrahedron Lett. 40:1999;6933-6937.
Khan A.U., Kovacic D., Kolbanovskiy A., Desai M., Frenkel K., Geacintov N.E. The decomposition of peroxynitrite to nitroxyl anion (. NO- ) and singlet oxygen in aqueous solution Proc. Natl. Acad. Sci. USA. 97:2000;2984-2989.
Martinez G.R., Di Mascio P., Bonini M.G., Augusto O., Briviba K., Sies H., Maurer P., Rothlisberger U., Herold S., Koppenol W.H. Peroxynitrite does not decompose to singlet oxygen (. 1ΔgO2 ) and nitroxyl ( NO- ) Proc. Natl. Acad. Sci. USA. 97:2000;10307-10312.
Goldstein S., Czapski G. Formation of peroxynitrate from the reaction of peroxynitrite with. CO2: evidence for carbonate radical production J. Am. Chem. Soc. 120:1998;3458-3463.
Uppu R.M., Lemercier J.-N., Squadrito G.L., Zhang H., Bolzan R.M., Pryor W.A. Nitrosation by peroxynitrite: use of phenol as a probe. Arch. Biochem. Biophys. 358:1998;1-16.
Yenes S., Messeguer A. A study of the reaction of different phenol substrates with nitric oxide and peroxynitrite. Tetrahedron. 55:1999;14111-14122.
Bryson H.M., Fulton B.R., Faulds D. Propofol: an update of its use in anaesthesia and conscious sedation. Drugs. 50:1995;513-559.
Mathy-Hartert M., Deby-Dupont G., Hans P., Deby C., Lamy M. Protective activity of propofol. Diprivan and intralipid against active oxygen species. Mediators Inflamm. 7:1998;327-333.
Kahraman S., Demiryürek A.T. Propofol is a peroxynitrite scavenger. Anesth. Analg. 84:1997;1127-1129.
Mouithys-Mickalad A., Hans P., Deby-Dupont G., Hoebeke M., Deby C., Lamy M. Propofol reacts with peroxynitrite to form a phenoxyl radical: demonstration by electron spin resonance. Biochem. Biophys. Res. Commun. 249:1998;833-837.
Mathy-Hartert M., Mouithys-Mickalad A., Kohnen S., Deby-Dupont G., Lamy M., Hans P. Effects of propofol on endothelial cells subjected to a peroxynitrite donor (SIN-1). Anaesthesia. 55:2000;1066-1071.
Cudic M., Ducrocq C. Transformations of 2,6-diisopropylphenol by NO-derived nitrogen oxides, particularly peroxynitrite. Nitric Oxide. 4:2000;147-156.
Bohle D.S., Glassbrenner P.A., Hansert B. Syntheses of pure tetramethylammonium peroxynitrite. Methods Enzymol. 269:1996;302-311.
Koppenol W.H. 100 years of peroxynitrite chemistry and 11 years of peroxynitrite biochemistry. Redox Rep. 6:2001;339-341.
Uppu R.M., Pryor W.A. Synthesis of peroxynitrite in a two-phase system using isoamyl nitrite and hydrogen peroxide. Anal. Biochem. 236:1996;242-249.
Appelman E.H., Gosztola D.J. Aqueous peroxynitric acid (. HOONO2 ): a novel synthesis and some chemical and spectroscopic properties Inorg. Chem. 34:1995;787-791.
Regimbal J.-M., Mozurkewich M. Peroxynitric acid decay mechanisms and kinetics at low pH. J. Phys. Chem. A. 101:1997;8822-8829.
Trapani G., Latrofa A., Franco M., Altomare C., Sanna E., Usala M., Biggio G., Liso G. Propofol analogues. Synthesis, relationships between structure and affinity at. GABAA receptor in rat brain and differential electrophysiological profile at human GABAA receptors J. Med. Chem. 41:1998;1846-1854.
Vaughan W.R., Kirkwood Finch G. The effect of alkyl groups on 4-nitro and 4-nitroso-phenols. J. Org. Chem. 21:1956;1201-1210.
Kharasch M.S., Joshi B.S. Reactions of hindered phenols. III. Reaction of nitrous acid with hindered phenols. J. Org. Chem. 27:1962;651-653.
Erschov V.V., Zlobina G.A., Nikiforov G.A. Nitration and nitrosation of 2,6-dialkylphenols. Izv. Akad. Nauk SSSR, Ser. Khim. 10:1963;1877-1880.
Wheatley W.B., Holdrege C.T. Dialkylaminoalkyl ethers of some 2,6-dialkylphenols. J. Org. Chem. 23:1958;568-571.
Menger F.M., Carnahan D. Comparison of phenolic couplings on. KMnO4 and K2MnO4 surfaces J. Org. Chem. 50:1985;3927-3928.
Fatiadi A.J. Facile coupling of sterically hindered 2,6-dialkylphenols with periodic acid. Synthesis. 1973;357-358.
Omura K. Rapid conversion of phenols to p-benzoquinones under acidic conditions with lead dioxide. Synthesis. 1998;1145-1148.
Petranek J., Pilar J. One-electron oxidation of 2,6-dialkyl-4-alkoxyphenols; effect of alkyl substituents. Collection Czechoslov. Chem. Commun. 35:1970;830-837.
Hazen S.L., Heinecke J.W. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation. is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J. Clin. Invest. 99:1997;2075-2081.
Dunford H.B. Peroxidase-catalyzed halide ion oxidation. Redox Rep. 5:2000;169-171.
Deby-Dupont G., Deby C., Lamy M. Neutrophil myeloperoxidase revisited: its role in health and disease. Intensivmed. 36:1999;500-513.
Eiserich J.P., Cross C.E., Jones A.D., Halliwell B., van der Vliet A. Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric protein modification. J. Biol. Chem. 271:1996;19199-19208.
Alvarez B., Radi R. Peroxynitrite decay in the presence of hydrogen peroxide, mannitol and ethanol: a reappraisal. Free Radic. Res. 34:2001;467-475.