[en] The Hölder spaces provide a natural way for measuring the smoothness of a function. These spaces appear in different areas such as approximation theory and multifractal analysis and lead to natural definitions of the notion of fractal function; for example a function belonging to $C^\alpha$ with $\alpha\in (0,1)$ typically has a fractal graph. The purpose of this poster is to present a generalization of such spaces as well as some recent results about their characterizations.
Research Center/Unit :
Analyse, analyse fonctionnelle et ondelettes
Disciplines :
Mathematics
Author, co-author :
Kreit, Damien ; Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Nicolay, Samuel ; Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Language :
English
Title :
On generalized Hölder spaces
Publication date :
June 2011
Number of pages :
A0
Event name :
Meeting on self-similarity and related fields
Event organizer :
Antoine Ayache, Pierre Patie, Thomas Simon and Ciprian A. Tudor