On generalized Hölder spaces

D. Kreit, S. Nicolay
Université de Liège, Dept. Mathematics, Liège, Belgium (D.Kreit@ulg.ac.be)

Abstract. The Hölder spaces \(C^\alpha(\mathbb{R}^d) \ (\alpha > 0) \) provide a natural way for measuring the smoothness of a function. These spaces appear in different areas such as approximation theory and multifractal analysis and lead to natural definitions of the notion of fractal function; for example a function belonging to \(C^{\alpha}(\mathbb{R}^d) \ (\alpha \in (0,1)) \) typically has a fractal graph. The purpose of this poster is to present a generalization of such spaces as well as some recent results about their characterizations.

Notation \(\Delta^k f(x) = f(x + h) - f(x) - \Delta^{k+1} f(x) \)

Definition of Hölder spaces \(C^\alpha(\mathbb{R}^d) \)

Let \(f \in L^p(\mathbb{R}^d) \) and \(\alpha > 0 \); we say that \(f \) belongs to \(C^\alpha(\mathbb{R}^d) \) if there exists \(C > 0 \) such that

\[
\sup_{|h| < |\epsilon|} \frac{|\Delta^k f(x)|}{|h|^\alpha} \leq C, \quad \forall x \in \mathbb{R}^d.
\]

The Hölder exponent of \(f \) is \(\alpha_f = \sup\{\alpha : f \in C^\alpha(\mathbb{R}^d)\} \).

Definition of admissible sequences

A sequence \(\sigma = (\sigma_j)_{j \in \mathbb{N}} \) of positive numbers is called admissible if there exist two positive constants \(d_0 \) and \(d_1 \) such that

\[
d_0 \leq \sigma_j \leq d_1 \sigma_{j+1}, \quad \forall j \in \mathbb{N}.
\]

Let \(\sigma_j = \inf_{k \geq j} \sigma_{k+1} \) and \(\sigma_j = \sup_{k \geq j} \sigma_{k+1} \), \(\forall j \in \mathbb{N} \).

The lower and upper Boyd index are respectively defined by

\[
s(\sigma) = \lim_{j \to +\infty} \log_{\sigma_{j+1}}(\sigma_j) \quad \text{and} \quad \sigma(\sigma) = \lim_{j \to +\infty} \log_{\sigma_{j+1}}(\sigma_j).
\]

Definition of generalized Hölder spaces \(C^{\sigma,\alpha}(\mathbb{R}^d) \)

Let \(\alpha > 0 \) and \(\sigma \) an admissible sequence. A function \(f \in L^p(\mathbb{R}^d) \) belongs to the generalized Hölder space \(C^{\sigma,\alpha}(\mathbb{R}^d) \) if there exists \(C > 0 \) such that

\[
\sup_{|h| < |\epsilon|} \frac{|\Delta^{k+1} f(x)|}{|h|^\alpha} \leq C \sigma_j, \quad \forall x \in \mathbb{R}^d, \quad \forall j \in \mathbb{N}.
\]

Remark The notion of admissible sequence generalizes the notion of modulus of continuity. Indeed, moduli of continuity are exactly decreasing admissible sequences.

Link with generalized Besov spaces

If \(\sigma(\sigma) = 0 \), it can be shown that generalized Hölder spaces are indeed generalized Besov spaces \(\mathcal{B}^{\sigma,\alpha}_{\infty,\infty} \) (see [4]).

Example Let \(\sigma_j = (2^j)^{|\log_2(2^j)|} \) for \(j \in \mathbb{N} \), A. Khintchine proved that the trajectories of a Brownian Motion belong almost surely to \(C^{\sigma,\alpha}(\mathbb{R}) \) (\(0 < \alpha < 1 \)).

A result à la Lion-Peetre

Let \(1 < m < n \) and \(\alpha > 0 \); with \(1 < \alpha < m \), \(\sigma = (\sigma_j)_{j \in \mathbb{N}^n} \) an admissible sequence and \(f \) a bounded continuous function on \(\mathbb{R} \) such that

\[
\sup_{|h| < |\epsilon|} \frac{|\Delta^k f(x)|}{|h|^\alpha} \leq C \sigma_j, \quad \forall x \in \mathbb{R}, \quad \forall j \in \mathbb{N}.
\]

We've got

\[
\sup_{|h| < |\epsilon|} \frac{|\Delta^k f(x)|}{|h|^\alpha} \leq C \sigma_j, \quad \forall x \in \mathbb{R}, \quad \forall j \in \mathbb{N}.
\]

A characterization by polynomials

Let \(N \in \mathbb{N} \) and \(\sigma = (\sigma_j)_{j \in \mathbb{N}^n} \) be a decreasing admissible sequence such that

\[
\sum_{j=1}^{\infty} \frac{2^{m(\sigma_j)}}{\sigma_j} \sum_{j=1}^{\infty} 2^{j(\sigma_j)} \sigma_j < \infty
\]

A characterization by polynomials (see [3])

\[
C^{\sigma,\alpha}(\mathbb{R}^d) = \left\{ f \in L^p(\mathbb{R}^d) : \sup_{j \in \mathbb{N}} \left(\sup_{|x| < |\epsilon|} \frac{|\Delta^k f(x)|}{|x|^\alpha} \right) \leq C \sigma_j \right\}
\]

A characterization by wavelet coefficients (see [3])

\[
C^{\sigma,\alpha}(\mathbb{R}^d) = \left\{ f \in L^p(\mathbb{R}^d) : \sup_{j \in \mathbb{N}} \left(\sup_{|x| < |\epsilon|} \frac{|\Delta^k f(x)|}{|x|^\alpha} \right) \leq C \sigma_j \right\}
\]

Examples Let \(\sigma = (\sigma_j)_{j \in \mathbb{N}} \) be an admissible sequence such that \(g(\sigma) = 0 \). Then

\[
C^{\sigma,\alpha}(\mathbb{R}^d) = \left\{ f \in L^p(\mathbb{R}^d) : \sup_{j \in \mathbb{N}} \left(\sup_{|x| < |\epsilon|} \frac{|\Delta^k f(x)|}{|x|^\alpha} \right) \leq C \sigma_j \right\}
\]

A characterization by wavelet coefficients (see [3])

\[
C^{\sigma,\alpha}(\mathbb{R}^d) = \left\{ f \in L^p(\mathbb{R}^d) : \sup_{j \in \mathbb{N}} \left(\sup_{|x| < |\epsilon|} \frac{|\Delta^k f(x)|}{|x|^\alpha} \right) \leq C \sigma_j \right\}
\]

A characteristic by the convolution

Let \(\sigma = (\sigma_j)_{j \in \mathbb{N}} \) be an admissible sequence such that \(g(\sigma) > 0 \). Then

\[
C^{\sigma,\alpha}(\mathbb{R}^d) = \left\{ f \in L^p(\mathbb{R}^d) : \sup_{j \in \math{\bf \text{References.}}}
\]