Reference : The peptidoglycan crosslinking enzyme system in Streptomyces strains R61, K15 and rim...
Scientific journals : Article
Life sciences : Microbiology
Life sciences : Biochemistry, biophysics & molecular biology
The peptidoglycan crosslinking enzyme system in Streptomyces strains R61, K15 and rimosus : Kinetic Coefficients Involved in the Interactions of the Membrane-Bound Transpeptidase with Peptide Substrates and β-Lactam Antibiotics
Dusart, Jean [Université de Liège - ULiège > Institut de Botanique > Service de Microbiologie > >]
Leyh-Bouille, Mélina [Université de Liège - ULiège > Institut de Botanique > Service de Microbiologie > >]
Ghuysen, Jean-Marie [Université de Liège - ULiège > Institut de Botanique > Service de Microbiologie > >]
European Journal of Biochemistry
Blackwell Science
Yes (verified by ORBi)
United Kingdom
[en] carboxypeptidases/*metabolism ; cell membrane/enzymology ; kinetics ; muramoylpentapeptide carboxypeptidase/isolation & purification/*metabolism ; penicillin g ; penicillins ; peptidoglycan/*metabolism ; species specificity ; streptomyces/*enzymology ; substrate specificity
[en] The transpeptidation reaction performed by the membranes of Streptomyces strain R61 fits the general rate equation for an enzyme-catalysed bimolecular reaction. The same membranes (E) interact with beta-lactams (I) to form inactive penicillin-enzyme-membrane complexes (EI) of rather high stability, which subsequently break down (E + I leads to EI leads to E + degradation products). The enzyme is regenerated and the antibiotic is released in the form of an inactive metabolite. With benzylpenicillin, the degradation product is benzylpenicilloic acid. The reaction is heat-labile. The first step of the reaction (E + I leads to EI) is characterized by a second-order rate constant (kformation in M-1 s-1) and the second step (EI leads to E + degradation products) by a first-order rate constant (kbreakdown in s-1). The effects in vitro of various beta-lactams on the membrane-bound transpeptidase, as expressed by the relevant kformation and kbreakdown values, parallel the effects in vivo of the same antibiotics as expressed by their ability to prevent the germination and growth of conidiospores. The kinetic parameters of the transpeptidase that was solubilized with N-cetyl-N,N,N-trimethylammonium bromide with respect to its interaction with both peptide substrates and beta-lactam antibiotics are quantitatively different from those of the membrane-bound enzyme. Moreover, the solubilized enzyme fragments benzylpenicillin with formation of phenylacetylglycine, a reaction which is similar to that catalysed by the exocellular R61 enzyme. The membranes of Streptomyces strains rimosus and K15 possess an active 'classic' penicillinase. They were not studied but the kinetic coefficients of the corresponding solubilized transpeptidases were determined and compared with those of the solubilized enzyme from strain R61.
National Institutes of Health - NIH
Researchers ; Professionals

File(s) associated to this reference

Fulltext file(s):

Open access
Ghuysen_1977_EJbIOCHEM_33.pdfPublisher postprint1.02 MBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.