Article (Scientific journals)
Maximal subalgebras of vector fields for equivariant quantizations
Boniver, Fabien; Mathonet, Pierre
2001In Journal of Mathematical Physics, 42 (2), p. 582-589
Peer Reviewed verified by ORBi
 

Files


Full Text
BoniverMathonetMaximal.pdf
Author postprint (275.39 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Maximal subalgebra; Polynomial vector field; Irreducible filtered algebra
Abstract :
[en] The elaboration of new quantization methods has recently developed the interest in the study of subalgebras of the Lie algebra of polynomial vector fields over a Euclidean space. In this framework, these subalgebras define maximal equivariance conditions that one can impose on a linear bijection between observables that are polynomial in the momenta and differential operators. Here, we determine which finite dimensional graded Lie subalgebras are maximal. In order to characterize these, we make use of results of Guillemin, Singer, and Sternberg and Kobayashi and Nagano.
Disciplines :
Mathematics
Author, co-author :
Boniver, Fabien
Mathonet, Pierre ;  Université de Liège - ULiège > Département de mathématique > Département de mathématique
Language :
English
Title :
Maximal subalgebras of vector fields for equivariant quantizations
Publication date :
February 2001
Journal title :
Journal of Mathematical Physics
ISSN :
0022-2488
eISSN :
1089-7658
Publisher :
American Institute of Physics, Melville, United States - New York
Volume :
42
Issue :
2
Pages :
582-589
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 16 May 2011

Statistics


Number of views
38 (3 by ULiège)
Number of downloads
161 (5 by ULiège)

Scopus citations®
 
10
Scopus citations®
without self-citations
8
OpenCitations
 
10
OpenAlex citations
 
14

Bibliography


Similar publications



Contact ORBi