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Abstract. The elaboration of new quantization methods has recently devel-

oped the interest in the study of subalgebras of the Lie algebra of polynomial
vector fields over a Euclidean space. In this framework, these subalgebras de-

fine maximal equivariance conditions that one can impose on a linear bijection

between observables that are polynomial in the momenta and differential oper-
ators. Here, we determine which finite dimensional graded Lie subalgebras are

maximal. In order to characterize these, we make use of results of Guillemin,

Singer, and Sternberg and Kobayashi and Nagano.

1. Introduction

Our interest in the present study comes from recent works about new equivariant
quantizations (see [1] and [2]). One can define quantization maps as linear bijections
Q from the space Pol(T ∗M) of functions on the cotangent bundle of a smooth
manifold M , that are polynomial on the fibre, to a space Dλ(M) of differential
operators acting on tensor densities of weight λ over M .

It is known that a quantization map Q cannot be equivariant with respect to all
diffeomorphisms of M . From the infinitesimal point of view, this means that such a
map does not commute with the action on these spaces of the Lie algebra Vect(M)
of vector fields over M . In other words, differential operators and polynomials are
inequivalent modules of Vect(M).

However, when M is endowed with an additional structure, some particular
subalgebras of Vect(M) naturally deserve consideration, because they are made up
of infinitesimal transformations preserving the structure.

The authors of [1] and [2] considered the case of infinitesimal projective or confor-
mal transformations of M . In suitable charts, these can be realized in polynomial
vector fields over a Euclidean space. For instance, if M is endowed with a pro-
jective structure i.e. M is locally identified with a real projective space, say of
dimension n then in appropriate charts, the Lie algebra of infinitesimal projective
transformations –isomorphic to sl(n+ 1,R)– is generated by the vector fields

(1)
d

dxj
, xj

d

dxk
, xj

n∑
l=1

xl
d

dxl
, ∀j, k 6 n.

In this setting, those conformal and projective subalgebras share the property of
being maximal in the algebra of polynomial vector fields: they are not contained
in any larger proper subalgebra. The reader may refer to [2] and [3] for proofs.
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Now, it was proved in [1] and [2] that one could construct a quantization map
equivariant with respect to those subalgebras. This quantization is unique up to
normalization.

In this framework, our concern in the present paper is to determine all finite
dimensional graded subalgebras of polynomial vector fields over a given Euclidean
space that are maximal.

Independently of quantization purposes, other maximality conditions have also
been studied.

In [4], Kantor classified irreducible transitively differential groups. This notion
gives rise, from the Lie algebraic point of view, to the class of finite dimensional
graded Lie subalgebras of polynomial vector fields containing all constant vector
fields. The author then seeks for irreducible (see [4, p. 1405] or below) subalgebras
being maximal in this class. Another more recent study is that of Post [5]. In
this paper, a stronger grading requirement is imposed in order to define a class of
finite dimensional Lie algebras containing all constant vector fields. All maximal
subalgebras of this class are then identified.

We point out two differences between the maximality conditions examined here
and in these studies.

On the one hand, we impose fewer conditions on the subalgebras we consider,
keeping only the requirements for a subalgebra to be graded and finite dimensional.
On the other hand, the maximality property is not investigated inside a particular
class of subalgebras, but in the general class of all subalgebras of polynomial vector
fields.

Before giving our main result and a brief description of the tools we shall use,
let us fix some notation.

Throughout this note, we assume that E is an n-dimensional vector space over
K, which is taken to be R or C. We shall deal with polynomial vector fields over E.

We denote by Vect∗(E) the space of these vector fields, i.e. the space of poly-
nomial maps from E to E. It is worth noticing that the vector fields considered
when E is complex are thus holomorphic. Let {ej , j = 1, . . . , n} be a basis of E.
Assume that X,Y ∈ Vect∗(E) are written X =

∑n
j=1X

jej and Y =
∑n
j=1 Y

jej .

We denote as usual by [X,Y ] the Lie bracket∑
j,k

(Xj∂jY
kek − Y j∂jXkek),

where ∂j represents the derivation d/dxj along the jth axis. For the sake of conve-
nience, we shall also use this notation to designate the jth vector of a basis of E.
We denote by ad(X) the map Y 7→ [X,Y ].

We name Euler vector field the identity transformation of E. In a basis {∂j}, it
reads

E(x) =
∑

xj∂j .

It defines a natural grading on Vect∗(E),

Vect∗(E) =
⊕
p>−1

Vectp(E),

where Vectp(E) denotes the space of eigenvectors of ad(E) associated with the
eigenvalue p, i.e. vector fields with homogeneous coefficients of degree p + 1. We
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are interested in these graded subalgebras L,

L =
⊕
−16p6r

Lp with Lp = Vectp(E) ∩ L,

which are maximal in Vect∗(E). As mentioned above, the notion of maximality
has been used in various senses. Therefore, it is worth emphasizing the following
definition.

Definition 1. A subalgebra L of Vect∗(E) is maximal if

L ⊂ L′ ⇒ L′ = L or L′ = Vect∗(E),

whenever L′ is a subalgebra of Vect∗(E).

2. Main Result

Definition 2. (See for instance [6, p. 682]) A graded subalgebra L = L−1⊕· · ·⊕Lk
of Vect∗(E) is said to be irreducible if the representation (L−1, ad|L0

) is irreducible.

Theorem 1. Let L = L−1 ⊕ · · · ⊕ Lk be a graded subalgebra of Vect∗(E). Then L
is maximal if and only if

(1) L−1 = Vect−1(E);
(2) L is irreducible;
(3) L1 6= 0;
(4) when K = R, the representation (L−1, ad|L0

) admits no complex structure.

The text below is organized as follows. In Section 3, we prove the necessity of the
first three conditions above. Then, in Section 4, we consider polynomial vector fields
from a slightly modified point of view, in order to prove, in Section 5, the fourth
condition given above. We expose in Section 6 how the graded maximal subalgebras
relate to the irreducible filtered Lie algebras of finite type, which were classified in
[7]. Using the classification of all irreducible infinite dimensional subalgebras of
polynomial vector fields (see for instance, [8], [9], [10], [6], and references therein),
we show in Section 7 that all these algebras give rise to a canonical graded maximal
subalgebra of polynomial vector fields.

3. Constant Vector Fields and Irreducibility

Lemma 1. Let L be a maximal subalgebra of Vect∗(E). Then E ∈ L if and only if
L is graded.

Proof. The sufficiency of the condition follows from the fact that

KE + L

is a Lie subalgebra when L is graded. In order to check the necessity of the condi-
tion, notice that

ad(E)kL ⊂ L ∀k ∈ N,
gives a Vandermonde system allowing to compute the homogeneous components of
a vector field X ∈ L. �

This proof is similar to the proof by Koecher (see [11, p.354]) that any ideal of
Vect∗(E) is graded. We therefore state the following remark:

Remark 1. If L is a subalgebra of Vect∗(E) that contains E, then any ideal of L
is graded.
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Lemma 2. Let L−1, L0, and L+ be vector subspaces of Vect−1(E), Vect0(E), and
⊕i>1Vecti(E), respectively, such that

(1) L−1 ⊕ L0 is a Lie subalgebra;
(2) [L−1, L+] ⊂ L0 ⊕ L+, and [L0, L+] ⊂ L+,

Set c0(L+) = L+and ck+1(L+) = [L+, c
k(L+)], (k ∈ N).

Then the smallest Lie subalgebra containing

L−1 ⊕ L0 ⊕ L+

is

L−1 ⊕ L0 ⊕
∑
k∈N

ck(L+).

In particular, if L+ ⊂ Vect1(E), the latter subalgebra is graded.

Proof. Using Jacobi identity, we check that [L0, c
k(L+)] ⊂ ck(L+) and conse-

quently [L−1, c
k(L+)] ⊂

∑k
i=0 c

i(L+) by induction on k > 1. By definition,
[c0(L+), ck(L+)] = ck+1(L+) for all k ∈ N. Then, we check, by induction on
j > 0, that [cj(L+), ck(L+)] ⊂ cj+k+1(L+). Therefore, L−1 ⊕L0 ⊕

∑
k∈N c

k(L+) is
a Lie subalgebra. It is trivially the smallest one to contain the subspaces L−1, L0

and L+. �

Definition 3. Let F be a vector subspace of Vect−1(E). We set

N i(F ) = {X ∈ Vecti(E) : ad(F )i+1X ⊂ F}

and

N = ⊕i>−1N i(F ).

Notice that N−1(F ) = F and that N 0(F ) is the intersection of the normalizer
of F and the subspace of linear vector fields.

Proposition 2. Let L = ⊕i>−1Li be a graded subalgebra of Vect∗(E). Then
N (L−1) is an infinite dimensional graded subalgebra containing L. Moreover,
N (L−1) = Vect∗(E) if and only if L−1 = Vect−1(E).

Proof. It is obvious that [N i(L−1),N j(L−1)] ⊂ N i+j(L−1). Furthermore, if L−1 =
0 or L−1 = Vect−1(E),

N (L−1) = L−1 ⊕i>0 Vecti(E).

Now, if h ∈ L−1, then, for every polynomial function p : E → K, the field x 7→ p(x)h
belongs to N (L−1). �

Corollary 3. Let L be a finite dimensional graded maximal subalgebra of Vect∗(E).
Then Vect−1(E) ⊂ L.

Corollary 4. Let L be a finite dimensional graded maximal subalgebra of Vect∗(E).
Then L1 6= 0.

Proof. Notice that L cannot be made only of constant and linear vector fields.
Indeed, it would then be included in the maximal subalgebra (1) presented in the
introduction, for instance. Therefore, Lk 6= 0 for some k > 0. The conclusion
follows from Corollary 3. �
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Proposition 5. Let L be a finite dimensional graded maximal subalgebra of Vect∗(E).
Then

(L−1 = Vect−1(E), ad|L0)

is an irreducible representation of L0. It follows that any nontrivial ideal of L
contains every constant vector field.

Proof. Let F 6= {0} be a stable subspace of L−1 under the action of L0.
The space

L−1 ⊕N 0(F )⊕
⊕
i>1

{X ∈ Vecti(E) : ad(L−1)iX ⊂ N 0(F )}

satisfies the hypotheses of Lemma 2. Its algebraic closure is an infinite dimensional
proper subalgebra containg L properly, hence a contradiction.

Let now I be a nontrivial ideal of L. It contains at least one constant vector field
since [V ect−1(E), I] ⊂ I. It contains all of them since I ∩ L−1 is a stable subspace
of L−1. �

4. A Convenient Model for Polynomial Vector Fields

It will be useful to consider the spaces of multilinear symmetric mappings from
E × · · · × E to E instead of those of homogeneous polynomial vector fields. We
shall write

Ti(E) = Si+1E∗ ⊗ E, and T∗(E) =
⊕
i>−1

Ti(E).

To turn T∗(E) into a Lie algebra, we define as in [6] the following bracket operation.
If t ∈ Tp(E) and t′ ∈ Tq(E) then [t, t′] ∈ Tp+q(E) and

[t, t′](x0, x1, . . . , xp+q) =
1

p!(q + 1)!

∑
j

t(t′(xj0 , xj1 , . . . , xjq ), xjq+1 , . . . , xjp+q )

− 1

(p+ 1)!q!

∑
k

t′(t(xk0 , xk1 , . . . , xkp), xkp+1 , . . . , xkp+q ),

where both j and k run over all possible permutations of the p+ q+ 1 first natural
numbers.

Proposition 6. The map T : T∗(E)→ Vect∗(E) defined by

T (M) : x ∈ E 7→ − 1

(p+ 1)!
M(x, . . . , x), ∀M ∈ Tp(E)

is an isomorphism of Lie algebras.

5. Absence of complex structure

We now assume K = R and prove, in Lemma 3, the fourth condition of maxi-
mality of our main result.

Let E be a real vector space of even dimension and J a complex structure of E,
i.e. an endomorphism of E such that J2 = −id. We denote by EJ the complex
vector space defined by E with the structure of C-module defined by

(a+ ib)e := ae+ bJe, ∀a, b ∈ R, ∀e ∈ E.
Define

T Jp (E) = {M ∈ Tp(E)|J(M(x0, . . . , xp)) = M(Jx0, x1, . . . , xp),∀x0, . . . , xp ∈ E}
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for all p > −1. Then the subalgebra T J∗ (E) = ⊕i>−1T Jp (E) of T∗(E) is isomorphic

to T∗(EJ) as a real Lie algebra. Indeed, the condition defining T J∗ (E) means that
an application M ∈ T∗(E) is C-multilinear on EJ .

Lemma 3. Let E be a real vector space and L = T−1(E) ⊕ ⊕kj=0Lj a graded
subalgebra of T∗(E). Assume that J is a complex structure of (L−1, ad|L0), i.e.

[x0, Jx−1] = J [x0, x−1], ∀x0 ∈ L0,∀x−1 ∈ L−1
and

J2 = −id.
Then,

L ⊂ T J∗ (L−1) ⊂ T∗(L−1)

where both inclusions are strict.

Proof. Indeed, L−1 = T J−1(E) = T−1(E). The requirement for J to intertwine the

action of L0 on L−1 precisely means that L0 ⊂ T J0 (E). If Lk−1 ⊂ T Jk−1(E) and
M ∈ Lk, the equalities

J ◦M(x0, . . . , xk) = J([M,x1](x0, x2, . . . , xk)) = M(x1, Jx0, x2, . . . , xk)

= M(Jx0, x1, . . . , xk)

show that M ∈ T Jk (E).
The inclusions are strict because the dimension of T J∗ (L−1) is infinite and because

the dimension of T Jp (L−1), for all p > 0, is strictly less than that of Tp(L−1). �

This lemma generalizes the construction used in [3] to show that a subalgebra of
infinitesimal conformal transformations, isomorphic to so(3, 1,R), is not maximal
in Vect(R2).

6. Irreducible Filtered Algebras of Finite Type

Let L = ⊕kj=−1Lj be a graded maximal subalgebra of polynomial vector fields. In
the last section, we have shown that L possesses interesting properties. It actually
belongs to a broader class of Lie algebras studied in [7, Theorem 1, p. 875].

This theorem describes the structure of some filtered finite dimensional Lie al-
gebras together with a group of automorphisms.

We shall only associate the trivial group {id} to such an algebra. Furthermore,
the reader may find worth noticing that the algebras we consider carry the filtration
which is naturally associated to their grading and that the other hypotheses of the
theorem are satisfied in view of the first three conditions required in our main result
for a subalgebra to be maximal.

For the sake of simplicity, we shall name algebras described by this theorem
Irreducible filtered algebras of finite type, as it was done in [6], or simply write
IFFT-algebras.

As a consequence of the mentioned result, we know that L is simple and is of
order two, i.e. L = L−1 ⊕ L0 ⊕ L1. Moreover, there exists a unique element e ∈ L
such that Lp is the eigenspace of ad(e) associated with the eigenvalue p. This
element is thus in the center of L0. We shall name it the Euler element of L.
Finally, L−1 and L1 are dual to each other as modules over L0 with respect to the
Killing form of L.



MAXIMAL SUBALGEBRAS OF VECTOR FIELDS FOR EQUIVARIANT QUANTIZATIONS 7

On the one hand, Kobayashi and Nagano gave a list of the admissible algebras
and detailed in each case the associated grading. The pairs (L, e) where L is a real
IFFT-algebra and e its Euler element are classified in [7, pp. 892–895]. On the
other hand, to any graded algebra L = ⊕k>−1Lk, they associated in a natural way
a graded subalgebra of T∗(L−1) (see [6, p. 683]). The reader may compare this
construction with that of Gradl ([12]). In the case of L = L−1 ⊕ L0 ⊕ L1, this is
done by the following monomorphism φ : L→ T∗(L−1) φ|L−1

= id,
φ|L0

= ad|L0

φ(M) = (x, y) 7→ [[M,x], y], ∀M ∈ L1,∀x, y ∈ L−1
Notice that this is the only way to proceed provided the value of φ on L−1 is set
to id.

7. IFFT-Algebras are Maximal

In this section, we prove the sufficiency of the conditions given in our main result
for a subalgebra of polynomial vector fields to be maximal.

We first assume that E is a complex vector space and L = L−1 ⊕ L0 ⊕ L1 an
irreducible graded subalgebra of T∗(E) such that L−1 = T−1(E) and L1 6= 0. Then
we shall show how the proof adapts to the real case. Let L′ be a subalgebra of
T∗(E) such that L′ ⊃ L. Then L′ is graded and irreducible, since L is.

If L′ is finite dimensional, one sees, by using the description of the IFFT-algebras
(see Section 6), that L′1 = L1, that L′ is simple and eventually that L′ = L, since
[L′−1, L

′
1] = L0.

Therefore, if L′ contains properly L, then it must be infinite dimensional. It
possesses two additional properties, consequences of the following result.

Proposition 7. ([6, p. 688]) Let ⊕p>−1Gp be an irreducible graded Lie algebra of
infinite type or finite type of order > 2 over a field of characteristic 0. Then G0 is
reductive and [G−1, G1] contains the semisimple part of G0.

(a) L′0 is reductive and has a nontrivial center (the multiples of the identity
transformation of L−1);

(b) L′ is still simple. Indeed, if I is an ideal of L′ then I ⊃ L (see Proposition 5)
which implies that I contains the multiples of the identity transformation
of L−1 and in turn that I ⊃ L′j for all j 6= 0. Since [L′−1, L

′
1] contains the

semisimple part of L′0, the conclusion follows.

In order to prove the maximality of L, the remaining point is to ensure that
L′ = T∗(E). The key result is due to Cartan. We refer the reader to the works of
Guillemin, Quillen, Singer, Sternberg, Kobayashi, and Nagano([8], [9], [10], [6]).

This result states that the only irreducible infinite dimensional graded subalge-
bras of Vect∗(E) are

(1) Vect∗(E) itself;
(2) the divergence-free vector fields;
(3) the Hamiltonian vector fields with respect to a symplectic form given on

E, provided E is even dimensional;
(4) the last two subalgebras supplemented with the multiples of the Euler vec-

tor field.
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But the subalgebras described in (4) are not simple, and those in (2) and (3) have
a simple linear part.

Hence the proof.
Now, when E is a real vector space and L and L′ as above, one proceeds in the

same way to prove the simplicity of L′, noticing that both L0 and L′0 still have a
one dimensional center.

Indeed, if x0 is central in one of these two subalgebras, then ad(x0) intertwines
the action of L0 on L−1. Since the representation (L−1, ad|L0) admits no com-
plex structure, Schur’s lemma ensures that ad(x0)|L−1

is a multiple of the identity
transformation of L−1. Therefore, dimZ(L0) = 1.

The description of irreducible infinite dimensional graded subalgebras of Vect∗(E)
is essentially due to Matsushima. It can be found in [6] and [13].

Two cases arise whether L0 ⊗ C acts irreducibly on E ⊗ C or not. In the first
case, L′ should be one of the real analogs of the Cartan algebras listed above. But
in the second, E admits a complex structure as an L0-module, which contradicts
the hypotheses.

Theorem 1 is proved.
In order to complete our search for maximal subalgebras of polynomial vector

fields over a given real vector space, we need to be able to identify in the tables
given in [7, pp. 892–895], the algebras such that the representation (L−1, ad|L0)
admits a complex structure.

Proposition 8. Let L−1 be a real vector space and L = L−1⊕L0⊕L1 be an IFFT-
algebra. Then (L−1, ad|L0

) admits a complex structure if and only if the algebra L
admits a complex structure.

Proof. The sufficiency of the condition is obvious. Notice that a complex structure
on L stabilizes the eigenspaces of e.

Let J−1 be a complex structure on (L−1, ad|L0
). Let J1 : L1 → L1 be the adjoint

of J−1 with respect to the Killing form β of L, i.e.

β(J1x1, x−1) = β(x1, J−1x−1), ∀x−1 ∈ L−1,∀x1 ∈ L1.

The so defined J1 intertwines the action of L0 on L1. Moreover,

[J1x1, x−1] = [x1, J−1x−1], ∀x−1 ∈ L−1,∀x1 ∈ L1.

Indeed, for all x−1, y−1 ∈ L−1 and x1, y1 ∈ L1,

β([[x1, J−1x−1]y−1], y1) = β(J−1x−1, [x1, [y1, y−1]])
= β(x−1, [J1x1, [y1, y−1]])
= β([[J1x1, x−1], y−1], y1).

Define

J0 : L0 → T0(L−1) : A 7→ A ◦ J−1.
This map is actually valued in L0 since

(J0[x1, x−1])y−1 = [[x1, x−1], J−1y−1] = [[x1, J−1y−1], x−1]
= [[J1x1, y−1], x−1] = [J1x1, x−1]y−1

for all y−1 ∈ L−1.
The map J : L → L defined by its restrictions Ji to Li (i = −1, 0, 1) is then a

complex structure of L as a Lie algebra. �
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The statement “IFFT-algebras are maximal” should be taken in the following
sense. In the tables given in [7], one can distinguish complex algebras from real
ones admitting no complex structure. The latter give rise to maximal subalgebras
of the real algebra T∗(L−1). One may consider the former as Lie subalgebras of the
real Lie algebra T∗(L−1), in which case Lemma 3 shows that they are not maximal.
They are maximal when regarded in their natural position of complex subalgebras
of the complex Lie algebra T∗(L−1).
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