Paper published in a book (Scientific congresses and symposiums)
Linear regression under fixed-rank constraints: a Riemannian approach
Meyer, Gilles; Bonnabel, Silvère; Sepulchre, Rodolphe
2011In Proceedings of the 28th International Conference on Machine Learning
Peer reviewed
 

Files


Full Text
meyer-icml-11.pdf
Author preprint (339.37 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
linear regression; fixed-rank matrices; geometric optimization algorithms
Abstract :
[en] In this paper, we tackle the problem of learning a linear regression model whose parameter is a fixed-rank matrix. We study the Riemannian manifold geometry of the set of fixed-rank matrices and develop efficient line-search algorithms. The proposed algorithms have many applications, scale to high-dimensional problems, enjoy local convergence properties and confer a geometric basis to recent contributions on learning fixed-rank matrices. Numerical experiments on benchmarks suggest that the proposed algorithms compete with the state-of-the-art, and that manifold optimization offers a versatile framework for the design of rank-constrained machine learning algorithms.
Disciplines :
Computer science
Author, co-author :
Meyer, Gilles ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Bonnabel, Silvère;  Mines ParisTech > Robotics Center
Sepulchre, Rodolphe ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Linear regression under fixed-rank constraints: a Riemannian approach
Publication date :
2011
Event name :
28th International Conference on Machine Learning
Event place :
Bellevue, United States
Main work title :
Proceedings of the 28th International Conference on Machine Learning
Peer reviewed :
Peer reviewed
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 13 May 2011

Statistics


Number of views
509 (4 by ULiège)
Number of downloads
612 (0 by ULiège)

Scopus citations®
 
50
Scopus citations®
without self-citations
45

Bibliography


Similar publications



Contact ORBi