Unpublished conference/Abstract (Scientific congresses and symposiums)
Supervised learning for a Kraft recovery boiler: a data mining approach with Random Forests.
Sainlez, Matthieu; Heyen, Georges; Lafourcade, Sébastien
2010ecos2010 - 23rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems
 

Files


Full Text
Slides-Sainlez-Ecos.pdf
Author preprint (2.47 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
data mining; Random Forests; Kraft recovery boiler; steam production
Abstract :
[en] A data mining methodology, the random forests, is applied to predict high pressure steam production from the recovery boiler of a Kraft pulping process. Starting from a large database of raw process data, the goal is to identify the input variables that explain the most significant output variations and to predict the high pressure steam flow.
Disciplines :
Energy
Author, co-author :
Sainlez, Matthieu ;  Université de Liège - ULiège > Form.doct. sc. ingé. (chim. appl. - Bologne)
Heyen, Georges ;  Université de Liège - ULiège > Département de chimie appliquée > LASSC (Labo d'analyse et synthèse des systèmes chimiques)
Lafourcade, Sébastien;  PEPITe Technologies Inc.
Language :
English
Title :
Supervised learning for a Kraft recovery boiler: a data mining approach with Random Forests.
Publication date :
June 2010
Event name :
ecos2010 - 23rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems
Event organizer :
EPFL - Ecole Polytechnique de Lausanne
Event place :
Lausanne, Switzerland
Event date :
du 14 juin au 17 juin 2010
Audience :
International
Available on ORBi :
since 10 May 2011

Statistics


Number of views
76 (9 by ULiège)
Number of downloads
2 (2 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
1

Bibliography


Similar publications



Contact ORBi