Paper published in a book (Scientific congresses and symposiums)
Gene expression data analysis using spatiotemporal blind source separation
Sainlez, Matthieu; Absil, Pierre-Antoine; Teschendorff, Andrew E.
2009In Verleysen, Michel (Ed.) ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational Intelligence and Learning.
Peer reviewed
 

Files


Full Text
es2009-110.pdf
Publisher postprint (540.05 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
independent component analysis; gene expression; spatiotemporal ICA
Abstract :
[en] We propose a “time-biased” and a “space-biased” method for spatiotemporal independent component analysis (ICA). The methods rely on computing an orthogonal approximate joint diagonalizer of a collection of covariance-like matrices. In the time-biased version, the time signatures of the ICA modes are imposed to be white, whereas the space-biased version imposes the same condition on the space signatures. We apply the two methods to the analysis of gene expression data, where the genes play the role of the space and the cell samples stand for the time. This study is a step towards addressing a question first raised by Liebermeister, on whether ICA methods for gene expression analysis should impose independence across genes or across cell samples. Our preliminary experiment indicates that both approaches have value, and that exploring the continuum between these two extremes can provide useful information about the interactions between genes and their impact on the phenotype.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Sainlez, Matthieu ;  Université de Liège - ULiège > Form.doct. sc. ingé. (chim. appl. - Bologne)
Absil, Pierre-Antoine;  Université Catholique de Louvain - UCL
Teschendorff, Andrew E.;  University College London - UCL
Language :
English
Title :
Gene expression data analysis using spatiotemporal blind source separation
Publication date :
April 2009
Event name :
ESANN'2009 , European Symposium on Artificial Neural Networks - Advances in Computational Intelligence and Learning.
Event organizer :
Université Catholique de Louvain-la-Neuve -UCL
Katholiek Universiteit Leuven - KUL
Event place :
Bruges, Belgium
Event date :
du 22 avril 2009 au 24 avril 2009
Audience :
International
Main work title :
ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational Intelligence and Learning.
Editor :
Verleysen, Michel
Publisher :
d-side, Evere, Belgium
ISBN/EAN :
2-930307-09-9
Pages :
159-163
Peer reviewed :
Peer reviewed
Available on ORBi :
since 10 May 2011

Statistics


Number of views
43 (4 by ULiège)
Number of downloads
2 (2 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
0

Bibliography


Similar publications



Contact ORBi