[en] The Src homology 2-containing inositol phosphatase SHIP1 functions in hemopoietic cells to limit activation events mediated by PI3K products, including Akt activation and cell survival. In contrast to the limited cellular expression of SHIP1, the related isoform SHIP2, is widely expressed in both parenchymal and hemopoietic cells. The goal of this study was to determine how SHIP2 functions to regulate M-CSF signaling. We report that 1) SHIP2 was tyrosine-phosphorylated in M-CSF-stimulated human alveolar macrophages, human THP-1 cells, murine macrophages, and the murine macrophage cell line RAW264; 2) SHIP2 associated with the M-CSF receptor after M-CSF stimulation; and 3) SHIP2 associated with the actin-binding protein filamin and localization to the cell membrane, requiring the proline-rich domain, but not on the Src homology 2 domain of SHIP2. Analyzing the function of SHIP2 in M-CSF-stimulated cells by expressing either wild-type SHIP2 or an Src homology 2 domain mutant of SHIP2 reduced Akt activation in response to M-CSF stimulation. In contrast, the expression of a catalytically deficient mutant of SHIP2 or the proline-rich domain of SHIP2 enhanced Akt activation. Similarly, the expression of wild-type SHIP2 inhibited NF-B-mediated gene transcription. Finally, fetal liver-derived macrophages from SHIP2 gene knockout mice enhanced activation of Akt in response to M-CSF treatment. These data suggest a novel regulatory role for SHIP2 in M-CSF-stimulated myeloid cells
Wang, Y.; Ohio State University, Columbus, OH 43210 > Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and The Dorothy M. Davis Heart and Lung Research Institute,
Keogh, R. J.; Ohio State University, Columbus, OH 43210 > Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and The Dorothy M. Davis Heart and Lung Research Institute
Hunter, M. G.; Ohio State University, Columbus, OH 43210 > Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and The Dorothy M. Davis Heart and Lung Research Institute
Mitchell, C. A.; Monash University, Clayton, Victoria, Australia > Department of Biochemistry and Molecular Biology
Frey, R. S.; University of Illinois College of Medicine, Chicago, IL 60612 > Department of Pharmacology
Javaid, K.; University of Illinois College of Medicine, Chicago, IL 60612 > ‡Department of Pharmacology
Malik, A. B.; University of Illinois College of Medicine, Chicago, IL 60612 > Department of Pharmacology
Schurmans, Stéphane ; Université Libre de Bruxelles - ULB > Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire
Tridandapani, S.; Ohio State University, Columbus, OH 43210 > Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and The Dorothy M. Davis Heart and Lung Research Institute
Marsh, C. B.; Ohio State University, Columbus, OH 43210 > Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and The Dorothy M. Davis Heart and Lung Research Institute
Language :
English
Title :
SHIP2 is recruited to the cell membrane upon M-CSF stimulation and regulates M-CSF-induced signaling
Publication date :
2004
Journal title :
Journal of Immunology
ISSN :
0022-1767
eISSN :
1550-6606
Publisher :
American Association of Immunologists, Baltimore, United States - Maryland
Pages :
6820-6830
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
National Institutes of Health Grants RO1HL63800, RO1HL67176, RO1HL66108, and P01HL070294, The Kelly Clark Memorial Fund, a Johnie Walker Murphy Career Investigator Award, and American Lung Association grants (to C.B.M.). S.T. is a fellow of the Leukemia and Lymphoma Society
Commentary :
Abbreviations used in this paper: PTEN, phosphatase and tensin homolog deleted from chromosome 10; Abl, Ableson tyrosine kinase; BMM, bone marrow-derived macrophage; GSK3, glycogen synthase kinase-3; HA, hemagglutinin; PI-3,4-P2, phosphatidylinositol 3,4,-disphosphate; PI-3,4,5-P3, phosphatidylinositol 3,4,5-trisphosphate; PRD, proline-rich domain; SH2, Src homology 2; WCL, whole cell lysate.
Krystal, G. 2000. Lipid phosphatases in the immune system. Semin. Immunol. 12:397.
Cantley, L. C., and B. G. Neel. 1999. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl. Acad. Sci. USA 96:4240.
Krystal, G., J. E. Damen, C. D. Helgason, M. Huber, M. R. Hughes, J. Kalesnikoff, V. Lam, P. Rosten, M. D. Ware, S. Yew, et al. 1999. SHIPs ahoy. Int. J. Biochem. Cell Biol. 31:1007.
Fruman, D. A., R. E. Meyers, and L. C. Cantley. 1998. Phosphoinositide kinases. Annu. Rev. Biochem. 67:481.
Maehama, T., and J. E. Dixon. 1998. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273:13375.
Myers, M. P., I. Pass, I. H. Batty, K. J. Van der, J. P. Stolarov, B. A. Hemmings, M. H. Wigler, C. P. Downes, and N. K. Tonks. 1998. The lipid phosphatase activity of PTEN is critical for its tumor suppressor function. Proc. Natl. Acad. Sci. USA 95:13513.
Bolland, S., R. N. Pearse, T. Kurosaki, and J. V. Ravetch. 1998. SHIP modulates immune receptor responses by regulating membrane association of Btk. Immunity 8:509.
Rohrschneider, L. R., J. F. Fuller, I. Wolf, Y. Liu, and D. M. Lucas. 2000. Structure, function, and biology of SHIP proteins. Genes Dev. 14:505.
Pesesse, X., S. Deleu, F. De Smedt, L. Drayer, and C. Erneux. 1997. Identification of a second SH2-domain-containing protein closely related to the phosphatidylinositol polyphosphate 5-phosphatase SHIP. Biochem. Biophys. Res. Commun. 239:697.
Liu, Q., F. Shalaby, J. Jones, D. Bouchard, and D. J. Dumont. 1998. The SH2-containing inositol polyphosphate 5-phosphatase, ship, is expressed during hematopoiesis and spermatogenesis. Blood 91:2753.
Aman, M. J., T. D. Lamkin, H. Okada, T. Kurosaki, and K. S. Ravichandran. 1998. The inositol phosphatase SHIP inhibits Akt/PKB activation in B cells. J. Biol. Chem. 273:33922.
Jacob, A., D. Cooney, S. Tridandapani, T. Kelley, and K. M. Coggeshall. 1999. FcγRIIb modulation of surface immunoglobulin-induced Akt activation in murine B cells. J. Biol. Chem. 274:13704.
Liu, L., J. E. Damen, M. R. Hughes, I. Babic, F. R. Jirik, and G. Krystal. 1997. The Src homology 2 (SH2) domain of SH2-containing inositol phosphatase (SHIP) is essential for tyrosine phosphorylation of SHIP, its association with Shc, and its induction of apoptosis. J. Biol. Chem. 272:8983.
Lioubin, M. N., P. A. Algate, S. Tsai, K. Carlberg, A. Aebersold, and L. R. Rohrschneider. 1996. p150Ship, a signal transduction molecule with inositol polyphosphate-5-phosphatase activity. Genes Dev. 10:1084.
Damen, J. E., L. Liu, P. Rosten, R. K. Humphries, A. B. Jefferson, P. W. Majerus, and G. Krystal. 1996. The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-phosphatase. Proc. Natl. Acad. Sci. USA 93:1689.
Fruman, D. A., L. E. Rameh, and L. C. Cantley. 1999. Phosphoinositide binding domains: embracing 3-phosphate. Cell 97:817.
Damen, J. E., L. Liu, M. D. Ware, M. Ermolaeva, P. W. Majerus, and G. Krystal. 1998. Multiple forms of the SH2-containing inositol phosphatase, SHIP, are generated by C-terminal truncation. Blood 92:1199.
Choi, Y., J. Zhang, C. Murga, H. Yu, E. Koller, B. P. Monia, J. S. Gutkind, and W. Li. 2002. PTEN, but not SHIP and SHIP2, suppresses the PI3K/Akt pathway and induces growth inhibition and apoptosis of myeloma cells. Oncogene 21:5289.
Takeshita, S., N. Namba, J. J. Zhao, Y. Jiang, H. K. Genant, M. J. Silva, M. D. Brodt, C. D. Helgason, J. Kalesnikoff, M. J. Rauh, et al. 2002. SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nat. Med. 8:943.
Huber, M., C. D. Helgason, M. P. Scheid, V. Duronio, R. K. Humphries, and G. Krystal. 1998. Targeted disruption of SHIP leads to Steel factor-induced degranulation of mast cells. EMBO J. 17:7311.
Helgason, C. D., J. E. Damen, P. Rosten, R. Grewal, P. Sorensen, S. M. Chappel, A. Borowski, F. Jirik, G. Krystal, and R. K. Humphries. 1998. Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev. 12:1610.
Sattler, M., S. Verma, Y. B. Pride, R. Salgia, L. R. Rohrschneider, and J. D. Griffin. 2001. SHIP1, an SH2 domain containing polyinositol-5-phosphatase, regulates migration through two critical tyrosine residues and forms a novel signaling complex with DOK1 and CRKL. J. Biol. Chem. 276:2451.
Sattler, M., S. Verma, C. H. Byrne, G. Shrikhande, T. Winkler, P. A. Algate, L. R. Rohrschneider, and J. D. Griffin. 1999. BCR/ABL directly inhibits expression of SHIP, an SH2-containing polyinositol-5-phosphatase involved in the regulation of hematopoiesis. Mol. Cell. Biol. 19:7473.
Wisniewski, D., A. Strife, S. Swendeman, H. Erdjument-Bromage, S. Geromanos, W. M. Kavanaugh, P. Tempst, and B. Clarkson. 1999. A novel SH2-containing phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase (SHIP2) is constitutively tyrosine phosphorylated and associated with src homologous and collagen gene (SHC) in chronic myelogenous leukemia progenitor cells. Blood 93:2707.
Muraille, E., X. Pesesse, C. Kuntz, and C. Erneux. 1999. Distribution of the src-homology-2-domain-containing inositol 5-phosphatase SHIP-2 in both non-haemopoietic and haemopoietic cells and possible involvement of SHIP-2 in negative signalling of B-cells. Biochem. J. 342 Pt. 3:697.
Erneux, C., C. Govaerts, D. Communi, and X. Pesesse. 1998. The diversity and possible functions of the inositol polyphosphate 5-phosphatases. Biochim. Biophys. Acta 1436:185.
Habib, T., J. A. Hejna, R. E. Moses, and S. J. Decker. 1998. Growth factors and insulin stimulate tyrosine phosphorylation of the 51C/SHIP2 protein. J. Biol. Chem. 273:18605.
Brauweiler, A., I. Tamir, S. Marschner, C. D. Helgason, and J. C. Cambier. 2001. Partially distinct molecular mechanisms mediate inhibitory FcγRI1B signaling in resting and activated B cells. J. Immunol. 167:204.
Taylor, V., M. Wong, C. Brandts, L. Reilly, N. M. Dean, L. M. Cowsert, S. Moodie, and D. Stokoe. 2000. 5′ phospholipid phosphatase SHIP-2 causes protein kinase B inactivation and cell cycle arrest in glioblastoma cells. Mol. Cell. Biol. 20:6860.
Clement, S., U. Krause, F. Desmedt, J. F. Tanti, J. Behrends, X. Pesesse, T. Sasaki, J. Penninger, M. Doherty, W. Malaisse, et al. 2001. The lipid phosphatase SHIP2 controls insulin sensitivity. Nature 409:92.
Pesesse, X., C. Moreau, A. L. Drayer, R. Woscholski, P. Parker, and C. Erneux. 1998. The SH2 domain containing inositol 5-phosphatase SHIP2 displays phosphatidylinositol 3,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate 5-phosphatase activity. FEBS Lett. 437:301.
March, M. E., and K. Ravichandran. 2002. Regulation of the immune response by SHIP. Semin. Immunol. 14:37.
Prasad, N., R. S. Topping, and S. J. Decker. 2001. SH2-containing inositol 5′-phosphatase SHIP2 associates with the p130(Cas) adapter protein and regulates cellular adhesion and spreading. Mol. Cell. Biol. 21:1416.
Dunant, N. M., D. Wisniewski, A. Strife, B. Clarkson, and M. D. Resh. 2000. The phosphatidylinositol polyphosphate 5-phosphatase SHIP1 associates with the dok1 phosphoprotein in bcr-Abl transformed cells. Cell. Signal. 12:317.
Sattler, M., R. Salgia, G. Shrikhande, S. Verma, J. L. Choi, L. R. Rohrschneider, and J. D. Griffin. 1997. The phosphatidylinositol polyphosphate 5-phosphatase SHIP and the protein tyrosine phosphatase SHP-2 form a complex in hematopoietic cells which can be regulated by BCR/ABL and growth factors. Oncogene 15:2379.
Odai, H., K. Sasaki, A. Iwamatsu, T. Nakamoto, H. Ueno, T. Yamagata, K. Mitani, Y. Yazaki, and H. Hirai. 1997. Purification and molecular cloning of SH2- and SH3-containing inositol polyphosphate-5-phosphatase, which is involved in the signaling pathway of granulocyte-macrophage colony-stimulating factor, erythropoietin, and Bcr-Abl. Blood 89:2745.
Dyson, J. M., C. J. O'Malley, J. Becanovic, A. D. Munday, M. C. Berndt, I. D. Coghill, H. H. Nandurkar, L. M. Ooms, and C. A. Mitchell. 2001. The SH2-containing inositol polyphosphate 5-phosphatase, SHIP-2, binds filamin and regulates submembraneous actin. J. Cell Biol. 155:1065.
Vandenbroere, I., N. Paternotte, J. E. Dumont, C. Erneux, and I. Pirson. 2003. The c-Cbl-associated protein and c-Cbl are two new partners of the SH2-containing inositol polyphosphate 5-phosphatase SHIP2. Biochem. Biophys. Res. Commun. 300:494.
Fan, X., D. M. Biskobing, D. Fan, W. Hofstetter, and J. Rubin. 1997. Macrophage colony stimulating factor down-regulates MCSF-receptor expression and entry of progenitors into the osteoclast lineage. J. Bone Miner. Res. 12:1387.
Azuma, C., F. Saji, T. Kimura, Y. Tokugawa, M. Takemura, Y. Samejima, and O. Tanizawa. 1990. Steroid hormones induce macrophage colony-stimulating factor (MCSF) and MCSF receptor mRNAs in the human endometrium. J. Mol. Endocrinol. 5:103.
Goyal, A., Y. Wang, M. M. Graham, A. I. Doseff, N. Y. Bhatt, and C. B. Marsh. 2002. Monocyte survival factors induce Akt activation and suppress caspase-3. Am. J. Respir. Cell Mol. Biol. 26:224.
Kelley, T. W., M. M. Graham, A. I. Doseff, R. W. Pomerantz, S. M. Lau, M. C. Ostrowski, T. F. Franke, and C. B. Marsh. 1999. Macrophage colony-stimulating factor promotes cell survival through Akt/protein kinase B. J. Biol. Chem. 274:26393.
Muraille, E., P. Bruhns, X. Pesesse, M. Daeron, and C. Erneux. 2000. The SH2 domain containing inositol 5-phosphatase SHIP2 associates to the immunoreceptor tyrosine-based inhibition motif of FcγRIIB in B cells under negative signaling. Immunol. Lett. 72:7.
Lesourne, R., P. Bruhns, W. H. Fridman, and M. Daeron. 2001. Insufficient phosphorylation prevents fc γ RIIB from recruiting the SH2 domain-containing protein-tyrosine phosphatase SHP-1. J. Biol. Chem. 276:6327.
Pengal, R. A., L. P. Ganesan, H. Fang, C. B. Marsh, C. L. Anderson, and S. Tridandapani. 2003. SHIP-2 inositol phosphatase is inducibly expressed in human monocytes and serves to regulate Fcγ receptor-mediated signaling. J. Biol. Chem. 278:22657.
Steen, H., B. Kuster, M. Fernandez, A. Pandey, and M. Mann. 2002. Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathway. J. Biol. Chem. 277:1031.
Roberts, W. M., A. T. Look, M. F. Roussel, and C. J. Sherr. 1988. Tandem linkage of human CSF-1 receptor (c-fms) and PDGF receptor genes. Cell 55:655.
Varney, M. L., K. J. Olsen, R. L. Mosley, C. D. Bucana, J. E. Talmadge, and R. K. Singh. 2002. Monocyte/macrophage recruitment, activation and differentiation modulate interleukin-8 production: a paracrine role of tumor-associated macrophages in tumor angiogenesis. In Vivo 16:471.
Weitzmann, M. N., S. Cenci, L. Rifas, C. Brown, and R. Pacifici. 2000. Interleukin-7 stimulates osteoclast formation by up-regulating the T-cell production of soluble osteoclastogenic cytokines. Blood 96:1873.
Baran, C. P., S. Tridandapani, C. D. Helgason, R. K. Humphries, G. Krystal, and C. B. Marsh. 2003. The inositol 5′-phosphatase SHIP-1 and the Src kinase Lyn negatively regulate macrophage colony-stimulating factor-induced Akt activity. J. Biol. Chem. 278:38628.
Sariban, E., K. Imamura, M. Sherman, V. Rothwell, P. Pantazis, and D. Kufe. 1989. Downregulation of c-fms gene expression in human monocytes treated with phorbol esters and colony-stimulating factor 1. Blood 74:123.
Yue, X., P. Favot, T. L. Dunn, A. I. Cassady, and D. A. Hume. 1993. Expression of mRNA encoding the macrophage colony-stimulating factor receptor (c-fms) is controlled by a constitutive promoter and tissue-specific transcription elongation. Mol. Cell Biol. 13:3191.
Kalesnikoff, J., L. M. Sly, M. R. Hughes, T. Buchse, M. J. Rauh, L. P. Cao, V. Lam, A. Mui, M. Huber, and G. Krystal. 2003. The role of SHIP in cytokine-induced signaling. Rev. Physiol. Biochem. Pharmacol. 149:87.
Bruyns, C., X. Pesesse, C. Moreau, D. Blero, and C. Erneux. 1999. The two SH2-domain-containing inositol 5-phosphatases SHIP1 and SHIP2 are coexpressed in human T lymphocytes. J. Biol. Chem. 380:969.
Tridandapani, S., Y. Wang, C. B. Marsh, and C. L. Anderson. 2002. Src homology 2 domain-containing inositol polyphosphate phosphatase regulates NF-κB-mediated gene transcription by phagocytic FcγRs in human myeloid cells. J. Immunol. 169:4370.
van der, F. A., I. Kuikman, D. Kramer, D. Geerts, M. Kreft, T. Takafuta, S. S. Shapiro, and A. Sonnenberg. 2002. Different splice variants of filamin-B affect myogenesis, subcellular distribution, and determine binding to integrin β subunits. J. Cell Biol. 156:361.
Chiang, W., M. L. Greaser, and G. E. Lyons. 2000. Filamin isogene expression during mouse myogenesis. Dev. Dyn. 217:99.
Stossel, T. P., J. Condeelis, L. Cooley, J. H. Hartwig, A. Noegel, M. Schleicher, and S. S. Shapiro. 2001. Filamins as integrators of cell mechanics and signalling. Nat. Rev. Mol. Cell Biol. 2:138.
Marston, S., K. Pinter, and P. Bennett. 1992. Caldesmon binds to smooth muscle myosin and myosin rod and crosslinks thick filaments to actin filaments. J. Muscle Res. Cell Motil. 13:206.
Sasaoka, T., T. Wada, K. Fukui, S. Murakami, H. Ishihara, R. Suzuki, K. Tobe, T. Kadowaki, and M. Kobayashi. 2004. SH2-containing inositol phosphatase 2 predominantly regulates Akt2, and not Akt1, phosphorylation at the plasma membrane in response to insulin in 3T3-L1 adipocytes. J. Biol. Chem. 279:14835.
Damen, J. E., M. D. Ware, J. Kalesnikoff, M. R. Hughes, and G. Krystal. 2001. SHIP'S C-terminus is essential for its hydrolysis of PIP3 and inhibition of mast cell degranulation. Blood 97:1343.
Aman, M. J., S. F. Walk, M. E. March, H. P. Su, D. J. Carver, and K. S. Ravichandran. 2000. Essential role for the C-terminal noncatalytic region of SHIP in FcγRIIB1-mediated inhibitory signaling. Mol. Cell. Biol. 20:3576.