[en] The flow and deposition of polydisperse granular materials is simulated through the magnetic diffusion limited aggregation (MDLA) model. The random walk undergone by an entity in the MDLA model is modified such that the trajectories are ballistic in nature, leading to a magnetically controlled ballistic deposition (MBD) model. This allows to obtain important ingredients about a difficult problem that of the nonequilibrium segregation of polydisperse sandpiles and heterogeneous adsorption of a binary distribution of particles which can interact with each other and with an external field. Our detailed results from many simulations of MBD clusters on a two-dimensional triangular lattice above a flat surface in a vertical finite size box for binary systems indicates intriguing variations of the density, "magnetization", types of clusters and fractal dimensions. We derive the field and grain interaction-dependent susceptibility and compressibility. We deduce a completely new phase diagram for binary granular piles and discuss its complexity inherent to different grain competition and cluster growth probabilities. (C) 2003 Elsevier B.V. All rights reserved.
Disciplines :
Physics
Author, co-author :
Trojan, K.
Ausloos, Marcel ; Université de Liège - ULiège > Département de physique > Physique statistique appliquée et des matériaux
Language :
English
Title :
Magnetically controlled ballistic deposition. A model of polydisperse granular packing
Publication date :
15 August 2003
Journal title :
Physica A. Statistical Mechanics and its Applications
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Herrmann H. Grains of understanding. Phys. World. 10:1997;31 Herrmann H., Luding S. Modeling granular media on the computer. Continuum Mech. Thermodyn. 10:1998;189 Herrmann H.J., Hovi J.-P., Luding S. Physics of Granular Media. 1998;Kluwer, Dordrecht.
Herrmann H. Grains of understanding. Phys. World. 10:1997;31 Herrmann H., Luding S. Modeling granular media on the computer. Continuum Mech. Thermodyn. 10:1998;189 Herrmann H.J., Hovi J.-P., Luding S. Physics of Granular Media. 1998;Kluwer, Dordrecht.
Herrmann H. Grains of understanding. Phys. World. 10:1997;31 Herrmann H., Luding S. Modeling granular media on the computer. Continuum Mech. Thermodyn. 10:1998;189 Herrmann H.J., Hovi J.-P., Luding S. Physics of Granular Media. 1998;Kluwer, Dordrecht.
Pandey R.B., Stauffer D., Seyfarth R., Cueva L.A., Gettrust J.F., Wood W. Density profile and flow of miscible fluid with dissimilar constituent masses. Physica A. 310:2002;325.
Faraudo J. New cooperative effects in ballistic deposition of hard disks. Phys. Rev. Lett. 89:2002;276 104.
Jullien R., Botet R. Scaling properties of the surface of the Eden model in. D = 2, 3, and 4 J. Phys. A. 18:1985;2279.
Witten T.A., Sander M.L. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47:1981;1400.
Zhang Z., Chen X., Lagally M.G. Bonding-geometry dependence of fractal growth on metal surfaces. Phys. Rev. Lett. 73:1994;1829.
Vandewalle N., Cloots R., Ausloos M. Simulated growth and microstructure of. DyBa2Cu3O7-x with and without Dy2BaCuO5 addition J. Mater. Res. 10:1995;268 Vandewalle N., Ausloos M., Cloots R. The kinetic growth anisotropy of the 123-(RE)BaCuO compounds. Philos. Mag. A. 72:1995;727.
Vandewalle N., Cloots R., Ausloos M. Simulated growth and microstructure of. DyBa2Cu3O7-x with and without Dy2BaCuO5 addition J. Mater. Res. 10:1995;268 Vandewalle N., Ausloos M., Cloots R. The kinetic growth anisotropy of the 123-(RE)BaCuO compounds. Philos. Mag. A. 72:1995;727.
Abbey H. An examination of the Reed Frost theory of epidemics. Hum. Biol. 24:1952;201.
Herrmann H.J., Roux S. Statistical Models for the Fracture of Disordered Media. 1990;North-Holland, Amsterdam, Ausloos M., Kowalski J.M. Stochastic models of two-dimensional fracture. Phys. Rev. B. 45(12):1992;830.
Herrmann H.J., Roux S. Statistical Models for the Fracture of Disordered Media. 1990;North-Holland, Amsterdam, Ausloos M., Kowalski J.M. Stochastic models of two-dimensional fracture. Phys. Rev. B. 45(12):1992;830.
Alonso J., Hovi J.-P., Herrmann H. A model for the calculation of the angle of repose from microscopic grain properties. Phys. Rev. E. 57:1998;672.
To K., Lai P.-Y., Pak H.K. Jamming of granular flow in a two-dimensional hopper. Phys. Rev. Lett. 86:2001;71 Pieret N., Mahnke R., Ausloos M., Vandewalle N. Stochastic master equation approach to aggregation in freeway traffic. Schreckenberg M., Wolf D.E. Traffic and Granular Flow 97. 1998;447-452 Springer, Singapore.
To K., Lai P.-Y., Pak H.K. Jamming of granular flow in a two-dimensional hopper. Phys. Rev. Lett. 86:2001;71 Pieret N., Mahnke R., Ausloos M., Vandewalle N. Stochastic master equation approach to aggregation in freeway traffic. Schreckenberg M., Wolf D.E. Traffic and Granular Flow 97. 1998;447-452 Springer, Singapore.
Duran J., Kolb E., Vanel L. Static friction and arch formation in granular materials. Phys. Rev. E. 58:1998;805.
Potts R. Some generalized order-disorder transformations. Proc. Cambridge Philos. Soc. 48:1952;106.
Majumdar S.N., Dean D.S. Slow relaxation in a constrained Ising spin chain. a toy model for granular compaction Phys. Rev. E. 66:2002;056 114.
Ausloos M., Vandewalle N., Cloots R. Magnetic kinetic growth models. Europhys. Lett. 24:1993;629 Ausloos M., Vandewalle N., Cloots R. Magnetic kinetic growth models. J. Magn. Magn. Mater. 140-144:1995;2185.
Ausloos M., Vandewalle N., Cloots R. Magnetic kinetic growth models. Europhys. Lett. 24:1993;629 Ausloos M., Vandewalle N., Cloots R. Magnetic kinetic growth models. J. Magn. Magn. Mater. 140-144:1995;2185.
Vandewalle N., Ausloos M. Magnetic diffusion-limited aggregation. Phys. Rev. E. 51:1995;597 Vandewalle N., Ausloos M. Growth models with internal competition. Acta Phys. Pol. B. 27:1996;737.
Vandewalle N., Ausloos M. Magnetic diffusion-limited aggregation. Phys. Rev. E. 51:1995;597 Vandewalle N., Ausloos M. Growth models with internal competition. Acta Phys. Pol. B. 27:1996;737.
Pastor-Satorras R., Rubi J.M. Particle-cluster aggregation with dipolar interactions. Phys. Rev. E. 51:1995;5994 Pastor-Satorras R., Rubi J.M. Ballistic adsorption of colloidal magnetic particles. Comput. Phys. Comm. 121-122:1999;265.
Pastor-Satorras R., Rubi J.M. Particle-cluster aggregation with dipolar interactions. Phys. Rev. E. 51:1995;5994 Pastor-Satorras R., Rubi J.M. Ballistic adsorption of colloidal magnetic particles. Comput. Phys. Comm. 121-122:1999;265.
de los Santos F., Tasinkevych M., Tavares J.M., Teixeira P.I.C. Deposition of magnetic particles. a computer simulation study J. Phys. C: Cond. Matter. 15:2003;1291.
Candia J., Albano E.V. Comparative study of an Eden model for the irreversible growth of spins and the equilibrium Ising model. Phys. Rev. E. 63:2001;066 127.
M. Horowitz Cl., Monetti R.A., Albano E.V. Competitive growth model involving random deposition and random deposition with surface relaxation. Phys. Rev. E. 63:2001;066 132.
Candia J., Albano E.V. Irreversible growth of a binary mixture confined in a thin film geometry with competing walls. Phys. Rev. Lett. 88(4):2002;016 103.
Mueller M., Binder K., Albano E.V. Finite size effects on the phase diagram of a binary mixture confined between competing walls. Physica A. 274:2000;188.
Candia J., Albano E.V. Non-equilibrium wetting transition in a magnetic Eden model. Eur. Phys. J. B. 16:2000;531.
Wang W., Cerdeira H.A. Kinetic growth of randomlike and ballisticlike deposition models. Phys. Rev. E. 47:1993;3357 El-Nashar H.F., Cerdeira H.A. Dynamic scaling in a ballistic deposition model for a binary system. Phys. Rev. E. 61:2000;6149 El-Nashar H.F., Wang W., Cerdeira H.A. Growth morphology for a ballistic deposition model for multiple species. Phys. Rev. E. 58:1998;4461.
Wang W., Cerdeira H.A. Kinetic growth of randomlike and ballisticlike deposition models. Phys. Rev. E. 47:1993;3357 El-Nashar H.F., Cerdeira H.A. Dynamic scaling in a ballistic deposition model for a binary system. Phys. Rev. E. 61:2000;6149 El-Nashar H.F., Wang W., Cerdeira H.A. Growth morphology for a ballistic deposition model for multiple species. Phys. Rev. E. 58:1998;4461.
Wang W., Cerdeira H.A. Kinetic growth of randomlike and ballisticlike deposition models. Phys. Rev. E. 47:1993;3357 El-Nashar H.F., Cerdeira H.A. Dynamic scaling in a ballistic deposition model for a binary system. Phys. Rev. E. 61:2000;6149 El-Nashar H.F., Wang W., Cerdeira H.A. Growth morphology for a ballistic deposition model for multiple species. Phys. Rev. E. 58:1998;4461.
Meakin P., Jullien R. Simple ballistic deposition models for the formation on thin films. SPIE. 48:1987;1651 Family F., Vicsek T. Scaling of the active zone in the Eden process on precolation networks and the ballistic depositon model. J. Phys. A. 18:1985;L75 Baiod R., Kessler D., Ramanlal P., Sander L., Savit R. Dynamical scaling of the surface of finite-density ballistic aggregation. Phys. Rev. A. 38:1988;3672.
Meakin P., Jullien R. Simple ballistic deposition models for the formation on thin films. SPIE. 48:1987;1651 Family F., Vicsek T. Scaling of the active zone in the Eden process on precolation networks and the ballistic depositon model. J. Phys. A. 18:1985;L75 Baiod R., Kessler D., Ramanlal P., Sander L., Savit R. Dynamical scaling of the surface of finite-density ballistic aggregation. Phys. Rev. A. 38:1988;3672.
Meakin P., Jullien R. Simple ballistic deposition models for the formation on thin films. SPIE. 48:1987;1651 Family F., Vicsek T. Scaling of the active zone in the Eden process on precolation networks and the ballistic depositon model. J. Phys. A. 18:1985;L75 Baiod R., Kessler D., Ramanlal P., Sander L., Savit R. Dynamical scaling of the surface of finite-density ballistic aggregation. Phys. Rev. A. 38:1988;3672.
Meakin P., Ramanlal P., Sander L.M., Ball R.C. Ballistic deposition on surfaces. Phys. Rev. A. 34:1986;5091.
Manna S.S. Two-state model of self-organized criticality. J. Phys. A. Math. Gen. 24:1991;L363.
Dickman R., Tom T., de Oliveira M.J. Sandpiles with height restrictions. Phys. Rev. E. 66:2002;016 111.
Blume M., Emery V.J., Griffiths R.B. Ising model for the Lambda transition and phase separation in. He3-He4 mixtures Phys. Rev. A. 4:1971;1071.
Ausloos M., Clippe P., Kowalski J.M., Pekalski A. Magnetic lattice gas. Phys. Rev. A. 22:1980;2218.
Nicodemi M., Coniglio A., Herrmann H.J. The compaction in granular media and frustrated Ising models. J. Phys. A. Math. Gen. 30:1997;L379.
Arenzon J.J., Nicodemi M., Sellitto M. Equilibrium properties of the Ising frustrated lattice gas. J. Phys. I (France). 6:1996;1143.
Schroeder M. Fractals, Chaos and Power Laws. 1991;W.H. Freeman and Co. New York.
West B.J., Deering B. The Lure of Modern Science. 1995;World Scientific, Singapore.
Chowhan Z.T. Segregation of Particulate Solids. Pharm. Technol. 19:1995;56.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.