Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition.
[en] We herein report on our efforts to improve the mapping resolution of a QTL with major effect on milk yield and composition that was previously mapped to bovine chromosome 20. By using a denser chromosome 20 marker map and by exploiting linkage disequilibrium using two distinct approaches, we provide strong evidence that a chromosome segment including the gene coding for the growth hormone receptor accounts for at least part of the chromosome 20 QTL effect. By sequencing individuals with known QTL genotype, we identify an F to Y substitution in the transmembrane domain of the growth hormone receptor gene that is associated with a strong effect on milk yield and composition in the general population.
Disciplines :
Genetics & genetic processes Veterinary medicine & animal health
Author, co-author :
Blott, Sarah
Kim, Jong-Joo
Moisio, Sirja
Schmidt-Kuntzel, Anne
Cornet, Anne ; Université de Liège - ULiège > Département de morphologie et pathologie > Pathologie spéciale et autopsies
Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition.
Publication date :
2003
Journal title :
Genetics
ISSN :
0016-6731
eISSN :
1943-2631
Publisher :
Genetics Society of America, Baltimore, United States - Maryland
ANDERSSON, L., 2001 Genetic dissection of phenotypic diversity in farm animals. Nat. Rev. Genet. 2: 130-138.
ARRANZ, J.-J., W. COPPIETERS, P. BERZI, N. CAMBISANO, B. GRISART et al., 1998 A QTL affecting milk yield and composition maps to bovine chromosome 20: a confirmation. Anim. Genet. 29: 107-115.
BAUMAN, D. E., R. W. EVERETT, W. H. WEILAND and R. J. COLLIER, 1999 Production responses to bovine somatotropin in Northeast dairy herds. J. Dairy Sci. 82: 2564-2573.
BOLDMAN, K. G., 1993 A Manual for Use of MTDFREML: A Set of Programs to Obtain Estimates of Variances and Covariances. U.S. Department of Agriculture, Agriculture Research Service.
CHARLIER, C., F. FARNIR, P. BERZI, P. VANMANSHOVEN, B. BROUWERS et al., 1996 IBD mapping of recessive traits in livestock: application to map the bovine syndactyly locus to chromosome 15. Genome Res. 6: 580-589.
CHURCHILL, G. A., and R. W. DOERGE, 1995 Empirical threshold values for quantitative trait mapping. Genetics 138: 963-971.
COPPIETERS, W., J. RIQUET, J.-J. ARRANZ, P. BERZI, N. CAMBISANO et al., 1998a A QTL with major effect on milk yield and composition maps to bovine chromosome 14. Mamm. Genome 9: 540-544.
COPPIETERS, W., A. KVASZ, J.-J. ARRANZ, B. GRISART, F. FARNIR et al., 1998b A rank-based nonparametric method to map QTL in outbred half-sib pedigrees: application to milk production in a granddaughter design. Genetics 149: 1547-1555.
DARVASI, A., 1998 Experimental strategies for the genetic dissection of complex traits in animal models. Nat. Genet. 18: 19-24.
FALCONER, D. S., and T. F. C. MACKAY, 1996 Introduction to Quantitative Genetics, Ed. 4, Longman, New York.
FARNIR, F.,W. COPPIETERS, J.-J. ARRANZ, P. BERZI, N. CAMBISANO et al., 2000 Extensive genome-wide linkage disequilibrium in cattle. Genome Res. 10: 220-227.
FARNIR, F., B. GRISART, W. COPPIETERS, J. RIQUET, P. BERZI et al., 2002 Simultaneous mining of linkage and linkage disequilibrium to fine map quantitative trait loci in outbred half-sib pedigrees: revisiting the location of a quantitative trait locus with major effect on milk production on bovine chromosome 14, Genetics 161: 275-287.
FLINT, J., and R. MOTT, 2001 Finding the molecular basis of quantitative traits: successes and pitfalls. Nat. Rev. Genet. 2: 437-445.
GEORGES, M., D. NIELSEN, M. MACKINNON, A. MISHRA, R. OKIMOTO et al., 1995 Mapping quantitative trait loci controlling milk production by exploiting progeny testing. Genetics 139: 907-920.
GODOWSKI, P. J., D. W. LEUNG, L. R. MEACHAM, J. P. GALGANI, R. HELLMISS et al., 1989 Characterization of the human growth hormone receptor gene and demonstration of a partial gene deletion in two patients with Laron-type dwarfism. Proc. Natl. Acad. Sci. USA 86: 8083-8087.
GRISART, B., W. COPPIETERS, F. FARNIR, L. KARIM, C. FORD et al., 2002 Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT gene with major effect on milk yield and composition. Genome Res. 12: 222-231.
HAUSER, S. D., M. F. McGRATH, R. J. COLLIER and R. J. KRIVI, 1990 Cloning and in vivo expression of bovine growth hormone receptor mRNA. Mol. Cell. Endocrinol. 72: 187-200.
HEAP, D., M. C. LUCY, R. J. COLLIER, C. K. BOYD and W. C. WARREN, 1995 Nucleotide sequence of the promoter and first exon of the somatotropin receptor gene in cattle. J. Anim. Sci. 73: 1529.
HUDSON, R. R., 1985 The sampling distribution of linkage disequilibrium under an infinite alleles model without selection. Genetics 109: 611-631.
JOHNSON, D. L., and R. THOMPSON, 1995 Restricted maximum likelihood estimation of variance components for univariate animal models using sparse matrix techniques and average information, J. Dairy Sci. 78: 449-456.
KAPPES, S. M., J. W. KEELE, R. T. STONE, R. A. McGRAW, T. S. SONSTEGARD et al., 1997 A second-generation linkage map of the bovine genome. Genome Res. 7: 235-249.
KARIM, L., W. COPPIETERS, L. GROBET, A. VALENTINI and M. GEORGES, 2000 Convenient genotyping of six myostatin mutations causing double-muscling in cattle using a multiplex oligonucleotide ligation assay. Anim. Genet. 31: 396-399.
KIM, J. J., and M. GEORGES, 2002 Evaluation of a new fine-mapping method exploiting linkage disequilibrium: a case study analysing a QTL with major effect on milk composition on bovine chromosome 14. Asian-Aust. J. Anim. Sci. 15: 1250-1256.
KNOTT, S., J. M. ELSEN and C. HALEY, 1996 Methods for multiple marker mapping of quantitative trait loci in half-sib populations. Theor. Appl. Genet. 93: 71-80.
LYNCH, M., and B. WALSH, 1997 Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland, MA.
MACKAY, T. F. C., 2001 Quantitative trait loci in Drosophila. Nat. Rev. Genet. 2: 11-20.
MAURICIO, R., 2001 Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat. Rev. Genet. 2: 370-381.
MEUWISSEN, T. H., and M. E. GODDARD, 2000 Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. Genetics 155: 421-430.
MEUWISSEN, T. H., and M. E. GODDARD, 2001 Prediction of identity by descent probabilities from marker-haplotypes. Genet. Sel. Evol. 33: 605-634.
MOUNT, D. W., 2001 Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
NICKERSON, D. A., V. O. TOBE and S. A. TAYLOR, 1997 PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res. 25: 2745-2751.
REICH, D. E., M. CARGILL, S. BOLK, J. IRELAND, P. C. SABETI et al., 2001 Linkage disequilibrium in the human genome. Nature 411: 199-204,
SPELMAN, R. L., W. COPPIETERS, L. KARIM, J. A. M. VAN ARENDONK and H. BOVENHUIS, 1996 Quantitative trait loci analysis for five milk production traits on chromosome six in the dutch Holstein-Friesian population. Genetics 144: 1799-1808.
SPIELMAN, R. S., R. E. McGINNIS and W. J. EWENS, 1993 Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52: 506-516.
VAN RADEN, P. M., and G. R. WIGGANS, 1991 Derivation calculation and use of National Animal Model Information. J. Dairy Sci. 74: 2737-2746.
VISSCHER, P. M., R. THOMPSON and C. S. HALEY, 1996 Confidence intervals in QTL mapping by bootstrapping. Genetics 143: 1013-1020.
WARREN, W., T. P. SMITH, C. E. REXROAD, III, S. C. FAHRENKRUG, T. ALLISON et al., 2000 Construction and characterization of a new bovine bacterial artificial chromosome library with 10 genome-equivalent coverage. Mamm. Genome 11: 662-663.