positional and abstract numeration systems; automata and formal language theory; recognizable sets of numbers; arithmetic operations; generalized multidimensional automatic sequences; multidimensional non uniform morphisms; combinatorics on words; linear recurrence sequences; real numbers; numérations de position et abstraites; théorie des automates et des langages formels; ensembles de nombres reconnaissables; opérations arithmétiques; suites automatiques généralisées multidimensionnelles; morphismes non uniformes multidimensionnels; combinatoire des mots; suites linéaires récurrentes; nombres réels
Abstract :
[en] In this dissertation we study and we solve several questions regarding abstract numeration systems. Each particular problem is the focus of a chapter. The first problem concerns the study of the preservation of recognizability under multiplication by a constant in abstract numeration systems built on polynomial regular languages. The second is a decidability problem, which has been already studied notably by J. Honkala and A. Muchnik and which is studied here for two new cases: the linear positional numeration systems and the abstract numeration systems. Next, we focus on the extension to the multidimensional setting of a result of A. Maes and M. Rigo regarding S-automatic infinite words. Finally, we propose a formalism to represent real numbers in the general framework of abstract numeration systems built on languages that are not necessarily regular. We end by a list of open questions in the continuation of the present work. [fr] Dans cette dissertation, nous étudions et résolvons plusieurs questions autour des systèmes de numération abstraits. Chaque problème étudié fait l'objet d'un chapitre. Le premier concerne l'étude de la conservation de la reconnaissabilité par la multiplication par une constante dans des systèmes de numération abstraits construits sur des langages réguliers polynomiaux. Le deuxième est un problème de décidabilité déjà étudié notamment par J. Honkala et A. Muchnik et ici décliné en deux nouvelles versions : les systèmes de numération de position linéaires et les systèmes de numération abstraits. Ensuite, nous nous penchons sur l'extension au cas multidimensionnel d'un résultat d'A. Maes et de M. Rigo à propos des mots infinis S-automatiques. Finalement, nous proposons un formalisme de la représentation des nombres réels dans le cadre général des systèmes de numération abstraits basés sur des langages qui ne sont pas nécessairement réguliers. Nous terminons par une liste de questions ouvertes dans la continuité de ce travail.