Profil

Boigelot Bernard

Dép. d'électric., électron. et informat. (Inst.Montefiore) > Informatique

Montefiore Institute

See author's contact details
Main Research Fields
Computer science
Engineering, computing & technology: Multidisciplinary, general & others
Mathematics
Physics
Architecture
Main Keywords
automata; Automata; symbolic state-space exploration; verification; acceleration;
Main Unit & Research Centers
Biosystem Engineering Department, Gembloux Agro-Bio Tech and Montefiore Institute, Université de Liège
LUCID-ULiège
Mathématiques
Montefiore Institute - Montefiore Institute of Electrical Engineering and Computer Science - ULiège
Main Co-authors
Wolper, Pierre 
Brusten, Julien 
Ernst, Damien 
Fonteneau, Raphaël 
Louveaux, Quentin 

Publications (total 52)

The most downloaded
705 downloads
Krishna Moorthy Parvathi, S. M., Boigelot, B., & Mercatoris, B. (15 July 2015). Effective segmentation of green vegetation for resource-constrained real-time applications. Paper presented at 10th European Conference on Precision Agriculture, Beit-Dagan, Israel. https://hdl.handle.net/2268/184433
The most cited
104 citations (SCOPUS)
Wolper, P., & Boigelot, B. (1998). Verifying Systems with Infinite but Regular State Spaces. Lecture Notes in Computer Science, 1427, 88-97. doi:10.1007/BFb0028736 https://hdl.handle.net/2268/74875

Boigelot, B. (2021). Symbolic methods and automata. In J.-É. Pin (Ed.), Handbook of Automata Theory (pp. 1189-1215). Berlin, Germany: EMS Press.
Peer reviewed

Agnello, A., Vanberg, S., Tonus, C., Boigelot, B., Leduc, L., Damblon, C., & Focant, J.-F. (2020). Introducing Molecular Structural Analysis Using a Guided Systematic Approach Combined with an Interactive Multiplatform Web Application. Journal of Chemical Education, 97, 4330-4338. doi:10.1021/acs.jchemed.0c00329
Peer Reviewed verified by ORBi

Boigelot, B., & Mainz, I. (2018). Efficient Symbolic Representation of Convex Polyhedra in High-Dimensional Spaces. Lecture Notes in Computer Science. doi:10.1007/978-3-030-01090-4_17
Peer reviewed

Boigelot, B., Mainz, I., Marsault, V., & Rigo, M. (August 2017). An efficient algorithm to decide periodicity of b-recognisable sets using MSDF convention. Leibniz International Proceedings in Informatics, 80. doi:10.4230/LIPIcs.ICALP.2017.118
Peer Reviewed verified by ORBi

Krishna Moorthy Parvathi, S. M., Boigelot, B., & Mercatoris, B. (15 July 2015). Effective segmentation of green vegetation for resource-constrained real-time applications. Paper presented at 10th European Conference on Precision Agriculture, Beit-Dagan, Israel.

Lens, S., & Boigelot, B. (2015). From Constrained Delaunay Triangulations to Roadmap Graphs with Arbitrary Clearance. Eprint/Working paper retrieved from https://orbi.uliege.be/2268/197953.

Lens, S., & Boigelot, B. (2015). Efficient Path Interpolation and Speed Profile Computation for Nonholonomic Mobile Robots. Eprint/Working paper retrieved from https://orbi.uliege.be/2268/184663.

Brandenbourger, M., Caps, H., hardouin, J., vitry, Y., Boigelot, B., & Dorbolo, S. (2015). Abstract: A36.00003 : Interaction between electrically charged droplets in microgravity. Paper presented at 68th Annual Meeting of the APS Division of Fluid Dynamics.

bandenbourger, M., Caps, H., hardouin, J., vitry, Y., Boigelot, B., & Dorbolo, S. (2015). Interaction between electrically charged droplets in microgravity. Paper presented at APS DFD 2015.

Lens, S., & Boigelot, B. (2014). Efficient Path Planning for Nonholonomic Mobile Robots. Liège, Belgium: Montefiore Institute.

Krishna Moorthy Parvathi, S. M., Detry, R., Boigelot, B., & Mercatoris, B. (05 March 2014). A vision-based autonomous inter-row weeder. Paper presented at ENVITAM PhD Student Day, Université catholique de Louvain, Louvain-la-Neuve, Belgium.

Krishna Moorthy Parvathi, S. M., Mercatoris, B., & Boigelot, B. (07 February 2014). Robot weed killers - no pain more gain. Poster session presented at 19th National Symposium on Applied Biological Sciences, Gembloux Agro-Bio Tech (Liège University), Faculty of Bioscience Engineering., Belgium.

Fonteneau, R., Ernst, D., Boigelot, B., & Louveaux, Q. (2014). Lipschitz robust control from off-policy trajectories. In Proceedings of the 53rd IEEE Conference on Decision and Control (IEEE CDC 2014).
Peer reviewed

Boigelot, B., Herbreteau, F., & Mainz, I. (2014). Acceleration of Affine Hybrid Transformations. Lecture Notes in Computer Science, 8837, 31-46. doi:10.1007/978-3-319-11936-6_4
Peer reviewed

Fonteneau, R., Ernst, D., Boigelot, B., & Louveaux, Q. (2013). Généralisation Min Max pour l'Apprentissage par Renforcement Batch et Déterministe : Relaxations pour le Cas Général T Etapes. In 8èmes Journées Francophones de Planification, Décision et Apprentissage pour la conduite de systèmes (JFPDA'13).
Peer reviewed

Fonteneau, R., Ernst, D., Boigelot, B., & Louveaux, Q. (2013). Min max generalization for deterministic batch mode reinforcement learning: relaxation schemes. SIAM Journal on Control and Optimization, 51 (5), 3355–3385. doi:10.1137/120867263
Peer Reviewed verified by ORBi

Fonteneau, R., Ernst, D., Boigelot, B., & Louveaux, Q. (2012). Généralisation min max pour l'apprentissage par renforcement batch et déterministe : schémas de relaxation. In Septièmes Journées Francophones de Planification, Décision et Apprentissage pour la conduite de systèmes (JFPDA 2012).
Peer reviewed

Boigelot, B., Brusten, J., & Degbomont, J.-F. (March 2012). Automata-Based Symbolic Representations of Polyhedra. Lecture Notes in Computer Science, 7183, 3-20. doi:10.1007/978-3-642-28332-1_2

Fonteneau, R., Ernst, D., Boigelot, B., & Louveaux, Q. (2012). Min max generalization for two-stage deterministic batch mode reinforcement learning: relaxation schemes.

Boigelot, B. (2012). Domain-specific regular acceleration. International Journal on Software Tools for Technology Transfer, 14 (2), 193-206. doi:10.1007/s10009-011-0206-x
Peer Reviewed verified by ORBi

Fonteneau, R., Ernst, D., Boigelot, B., & Louveaux, Q. (2011). Relaxation schemes for min max generalization in deterministic batch mode reinforcement learning. In 4th International NIPS Workshop on Optimization for Machine Learning (OPT 2011).
Peer reviewed

Boigelot, B., Brusten, J., & Degbomont, J.-F. (2010). Implicit Real Vector Automata. Electronic Proceedings in Theoretical Computer Science, 39, 63-76. doi:10.4204/EPTCS.39.5
Peer Reviewed verified by ORBi

Boigelot, B., Brusten, J., & Bruyère, V. (2010). On the Sets of Real Numbers Recognized by Finite Automata in Multiple Bases. Logical Methods in Computer Science, 6 (1), 1-17. doi:10.2168/LMCS-6(1:6)2010
Peer Reviewed verified by ORBi

Boigelot, B., & Brusten, J. (2009). A generalization of Cobham's theorem to automata over real numbers. Theoretical Computer Science, 410 (18), 1694-1703. doi:10.1016/j.tcs.2008.12.051
Peer Reviewed verified by ORBi

Boigelot, B., Brusten, J., & Leroux, J. (2009). A Generalization of Semenov's Theorem to Automata over Real Numbers. Lecture Notes in Computer Science, 5663, 469-484. doi:10.1007/978-3-642-02959-2_34
Peer reviewed

Boigelot, B., & Degbomont, J.-F. (2009). Partial Projection of Sets Represented by Finite Automata, with Application to State-Space Visualization. Lecture Notes in Computer Science, 5457, 200-211. doi:10.1007/978-3-642-00982-2_17
Peer reviewed

Boigelot, B., Brusten, J., & Bruyère, V. (July 2008). On the Sets of Real Numbers Recognized by Finite Automata in Multiple Bases. Lecture Notes in Computer Science, 5126, 112-123. doi:10.1007/978-3-540-70583-3_10
Peer reviewed

Demaret, J.-N., Piater, J. (Other coll.), Boigelot, B. (Other coll.), & Leclercq, P. (Other coll.). (2008). Programme SMA Sémantique.

Boigelot, B., & Brusten, J. (July 2007). A Generalization of Cobham's Theorem to Automata over Real Numbers. Lecture Notes in Computer Science, 4596, 813-824. doi:10.1007/978-3-540-73420-8_70
Peer reviewed

Boigelot, B. (2006). Number-Set Representations for Infinite-State Verification. In Proceedings of VISSAS 2005 (pp. 1-16). IOS Press.

Boigelot, B., & Herbreteau, F. (2006). The power of hybrid acceleration. Lecture Notes in Computer Science, 4144, 438-451. doi:10.1007/11817963_40
Peer reviewed

Boigelot, B., Jodogne, S., & Wolper, P. (2005). An effective decision procedure for linear arithmetic over the integers and reals. ACM Transactions on Computational Logic, 6 (3), 614--633. doi:10.1145/1071596.1071601
Peer Reviewed verified by ORBi

Boigelot, B., & Latour, L. (2004). Counting the solutions of Presburger equations without enumerating them. Theoretical Computer Science, 313 (1), 17-29. doi:10.1016/j.tcs.2003.10.002
Peer Reviewed verified by ORBi

Boigelot, B., Legay, A., & Wolper, P. (2004). Omega-regular model checking. Lecture Notes in Computer Science, 2988, 561-575. doi:10.1007/978-3-540-24730-2_41
Peer reviewed

Boigelot, B., Herbreteau, F., & Jodogne, S. (July 2003). Hybrid Acceleration using Real Vector Automata. Lecture Notes in Computer Science, 2725, 193-205.
Peer reviewed

Boigelot, B., Legay, A., & Wolper, P. (2003). Iterating transducers in the large. Lecture Notes in Computer Science, 2725, 223-235. doi:10.1007/978-3-540-45069-6_24
Peer reviewed

Boigelot, B. (2003). On Iterating Linear Transformations over Recognizable Sets of Integers. Theoretical Computer Science, 309 (1-3), 413-468. doi:10.1016/S0304-3975(03)00314-1
Peer Reviewed verified by ORBi

Boigelot, B., & Wolper, P. (July 2002). Representing arithmetic constraints with finite automata: An overview. Lecture Notes in Computer Science, 2401. doi:10.1007/3-540-45619-8_1

Boigelot, B., & Latour, L. (2001). Counting the Solutions of Presburger Equations without Enumerating Them. Lecture Notes in Computer Science, 2494, 40-51.
Peer reviewed

Boigelot, B., Jodogne, S., & Wolper, P. (2001). On the Use of Weak Automata for Deciding Linear Arithmetic with Integer and Real Variables. Lecture Notes in Computer Science, 2083, 611--625. doi:10.1007/3-540-45744-5_50
Peer reviewed

Wolper, P., & Boigelot, B. (March 2000). On the construction of automata from linear arithmetic constraints. Lecture Notes in Computer Science, 1785, 1-19. doi:10.1007/3-540-46419-0_1

Boigelot, B., & Godefroid, P. (1999). Symbolic Verification of Communication Protocols with Infinite State Spaces using QDDs. Formal Methods in System Design, 14 (3), 237-255. doi:10.1023/A:1008719024240
Peer Reviewed verified by ORBi

Boigelot, B. (1998). Symbolic Methods for Exploring Infinite State Spaces. Unpublished doctoral thesis, ULiège - Université de Liège.
Jury: Wolper, P. (Promotor).

Boigelot, B., Rassart, S., & Wolper, P. (1998). On the Expressiveness of Real and Integer Arithmetic Automata. Lecture Notes in Computer Science, 1443, 152-163. doi:10.1007/bfb0055049
Peer reviewed

Wolper, P., & Boigelot, B. (1998). Verifying Systems with Infinite but Regular State Spaces. Lecture Notes in Computer Science, 1427, 88-97. doi:10.1007/BFb0028736

Boigelot, B., Godefroid, P., Willems, B., & Wolper, P. (1997). The Power of QDDs. Lecture Notes in Computer Science, 1302, 172-186. doi:10.1007/bfb0032741
Peer reviewed

Boigelot, B., Bronne, L., & Rassart, S. (1997). An Improved Reachability Analysis Method for Strongly Linear Hybrid Systems. Lecture Notes in Computer Science, 1254, 167-178. doi:10.1007/3-540-63166-6_18
Peer reviewed

Boigelot, B., & Godefroid, P. (1997). Automatic Synthesis of Specifications from the Dynamic Observation of Reactive Programs. Lecture Notes in Computer Science, 1217, 321-333. doi:10.1007/BFb0035397
Peer reviewed

Boigelot, B., & Godefroid, P. (1996). Symbolic Verification of Communication Protocols with Infinite State Spaces Using QDDs. Lecture Notes in Computer Science, 1102, 1-12. doi:10.1007/3-540-61474-5_53
Peer reviewed

Boigelot, B., & Godefroid, P. (1996). Model Checking in Practice: An Analysis of the ACCESS.bus Protocol using SPIN. Lecture Notes in Computer Science, 1051, 465-478. doi:10.1007/3-540-60973-3_102
Peer reviewed

Wolper, P., & Boigelot, B. (1995). An Automata-Theoretic Approach to Presburger Arithmetic Constraints. Lecture Notes in Computer Science, 983, 21-32. doi:10.1007/3-540-60360-3_30

Boigelot, B., & Wolper, P. (1994). Symbolic Verification with Periodic Sets. Lecture Notes in Computer Science, 818, 55-67. doi:10.1007/3-540-58179-0_43
Peer reviewed

Contact ORBi