Abstract :
[en] A new fully automated method was developed for the quantitative analysis of an antibacterial drug, enrofloxacin (ENRO), in both nasal secretions and plasma samples of healthy pigs. The method is based on the use of a pre-column packed with restricted access material (RAM), namely RP-18 ADS (alkyl diol silica), for on-line sample clean-up coupled to a liquid chromatographic (LC) column containing octadecyl silica. The only off-line sample preparation was the 50-fold dilution of nasal secretions and plasma samples in the washing liquid composed of 25 mM phosphate buffer of pH 7.4. A 10 μl diluted sample volume was injected directly onto the pre-column and washed for 7 min. By rotation of a switching valve, the analyte of interest was eluted in the back-flush mode with the LC mobile phase which consisted in a mixture of 25 mM phosphate buffer of pH 3.0 and acetonitrile according to a segmented gradient elution. By a new rotation of the switching valve, the pre-column and the analytical column were equilibrated for 3 min with the initial mobile phases. The flow-rate was 0.8 ml min−1 for the washing liquid and 1.5 ml min−1 for the LC mobile phase. ENRO was detected by fluorescence at excitation and emission wavelengths of 278 and 445 nm, respectively. Finally, the developed method was validated using an original strategy based on total measurement error and accuracy profiles as a decision tool. The limits of quantitation of ENRO in plasma and in nasal secretions were 30.5 and 91.6 ng/ml, respectively. The validated method was then applied successfully to the determination of ENRO in healthy pigs treated by intramuscular injection at different doses (2.5, 10 and 30 mg/kg bodyweight) for a pilot study. This method could be also used for the simultaneous analysis of ENRO and its main metabolite, ciprofloxacin (CIPRO).
Scopus citations®
without self-citations
25