Doctoral thesis (Dissertations and theses)
Contributions to Batch Mode Reinforcement Learning
Fonteneau, Raphaël
2011
 

Files


Full Text
Fonteneau_thesis.pdf
Author preprint (2.22 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Reinforcement Learning; Machine Learning; Optimal Control; Artificial Intelligence
Abstract :
[en] This dissertation presents various research contributions published during these four years of PhD in the field of batch mode reinforcement learning, which studies optimal control problems for which the only information available on the system dynamics and the reward function is gathered in a set of trajectories. We first focus on deterministic problems in continuous spaces. In such a context, and under some assumptions related to the smoothness of the environment, we propose a new approach for inferring bounds on the performance of control policies. We also derive from these bounds a new inference algorithm for generalizing the information contained in the batch collection of trajectories in a cautious manner. This inference algorithm as itself lead us to propose a min max generalization framework. When working on batch mode reinforcement learning problems, one has also often to consider the problem of generating informative trajectories. This dissertation proposes two different approaches for addressing this problem. The first approach uses the bounds mentioned above to generate data tightening these bounds. The second approach proposes to generate data that are predicted to generate a change in the inferred optimal control policy. While the above mentioned contributions consider a deterministic framework, we also report on two research contributions which consider a stochastic setting. The first one addresses the problem of evaluating the expected return of control policies in the presence of disturbances. The second one proposes a technique for selecting relevant variables in a batch mode reinforcement learning context, in order to compute simplified control policies that are based on smaller sets of state variables.
Disciplines :
Computer science
Author, co-author :
Fonteneau, Raphaël ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Contributions to Batch Mode Reinforcement Learning
Defense date :
24 February 2011
Institution :
ULiège - Université de Liège
Degree :
Doctorat en Sciences de l'Ingénieur
Promotor :
Ernst, Damien  ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Wehenkel, Louis  ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
President :
Louveaux, Quentin  ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Jury member :
Sepulchre, Rodolphe ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Munos, Remi
Murphy, Susan
Sebag, Michèle
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Available on ORBi :
since 17 February 2011

Statistics


Number of views
233 (41 by ULiège)
Number of downloads
331 (25 by ULiège)

Bibliography


Similar publications



Contact ORBi