[en] A dynamic model has been developed to represent biogeochemical variables and processes observed during experimental blooms of the coccolithophore Emiliania huxleyi induced inmesocosms over a period of 23 days.
The model describes carbon (C), nitrogen (N), and phosphorus (P) cycling through E. huxleyi and the microbial loop, and computes pH and the partial pressure of carbon dioxide (pCO2) from dissolved inorganic carbon (DIC) and total alkalinity (TA). The main innovations are: 1) the representation of E. huxleyi dynamics using an unbalanced growthmodel in carbon and nitrogen, 2) the gathering of formulations describing typical processes involved in the export of carbon such as primary production, calcification, cellular dissolved organic carbon (DOC) excretion, transparent exopolymer (TEP) formation and viral lyses, and 3) an original and validated representation of the calcification process as a function of the net primary production with a
modulation by the intra-cellular N:C ratio mimicking the effect of nutrients limitation on the onset of calcification. It is shown that this new mathematical formulation of calcification provides a better representation of the dynamics of TA, DIC and calcification rates derived from experimental data compared to classicaly used formulations (e.g. function of biomass or of net primary production without anymodulation term).
In a first step, the model has been applied to the simulations of present pCO2 conditions. It adequately reproduces the observations for chemical and biological variables and provides an overall view of carbon and nitrogen dynamics. Carbon and nitrogen budgets are derived from the model for the different phases of the bloom, highlighting three distinct phases, reflecting the evolution of the cellular C:N ratio and the interaction between hosts and viruses. During the first phase, inorganic nutrients are massively consumed by E. huxleyi increasing its biomass. Uptakes of carbon and nitrogen are maintained at a constant ratio. The second phase is triggered by the exhaustion of phosphate (PO4 3−). Uptake of carbon and nitrogen being uncoupled, the cellular
C:N ratio of E. huxleyi increases. This stimulates the active release of DOC, acting as precursors for TEP. The third phase is characterised by an enhancement of the phytoplankton mortality due to viral lysis. A huge amount of DOC has been accumulated in the mesocosm.
Aksnes D., Egge J., Rosland R., Heimdal B. Representation of Emiliania huxleyi in phytoplankton simulation models. A first approach. Sarsia 1994, 79:291-300.
Anderson T., Pondaven P. Non-Redfield carbon and nitrogen cycling in the Sargasso Sea: pelagic imbalances and export flux. Deep-Sea Research Part I 2003, 50:573-591.
Anderson L., Sarmiento J. Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochemical Cycles 1994, 8:65-80.
Anderson T.R., Williams B. Modelling the seasonal cycle of dissolved organic carbon at Station E1 in the English Channel. Estuarine, Coastal and Shelf Science 1998, 46:93-109.
Banse K. Uptake of inorganic carbon and nitrate by marine plankton and the Redfield ratio. Global Biogeochemical Cycles 1994, 8:81-84.
Brun R., Kuhni M., Siegrist H., Gujer W., Reichert P. Practical identitfiability of ASM2D parameters systematic selection and tuning of parameter subsets. Water Research 2002, 36:4113-4127.
Buitenhuis E., Van Bleijswijk J., Bakker D., Veldhuis M. Trends in inorganic and organic carbon in a bloom of Emiliania huxleyi in the North Sea. Marine Ecology Progress Series 1996, 143:271-282.
Buitenhuis E., Wal V.D., De Baar H. Blooms of Emiliania huxleyi are sinks of atmospheric carbon dioxide: a field and mesocosm study derived simulation. Global Biogeochemical Cycles 2001, 15(3):577-587.
Delille B., Harlay J., Zondervan I., Jacquet S., Chou L., Wollast R., Bellerby R., Frankignoulle M., Vieira Borges A., Riebesell U., Gattuso J.-P. Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi. Global Biogeochemical Cycles 2005, 19:GB2023. 10.1029/2004GB002318.
Engel A., Schartau M. Influence of transparent exopolymer particles (TEP) on sinking velocity of Nitzschia closterium aggregates. Marine Ecology Progress Series 1999, 182:69-76.
Engel A., Thoms S., Riebesell U., Rochelle-Newall E., Zondervan I. Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature 2004, 428:929-932.
Engel A., Delille B., Jacquet S., Riebesell U., Rochelle-Newall E., Terbrüggen A., Zondervan I. TEP and DOC production by Emiliania huxleyi exposed to different CO2 concentrations: a mesocosm experiment. Aquatic Microbial Ecology 2004, 34(1):93-104.
Engel A., Zondervan I., Aerts K., Beaufort L., Benthien A., Chou L., Delille B., Gattuso J.-P., Harlay J., Heemann C., Hoffmann L., Jacquet S., Nejstgaard J., Pizay M.-D., Rochelle-Newall E., Schneider U., Terbrueggen A., Riebesell U. Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnology and Oceanography 2005, 50(2):493-507.
Engel A., Schulz K.G., Riebesell U., Bellerby R., Delille B., Schartau M. Effects of CO2 on particle size distribution and phytoplankton abundance during a mesocosm bloom experiment (PeECE II). Biogeosciences 2008, 5(2):509-521.
Godoi R.H.M., et al. Organic surface coating on coccolithophores-Emiliania huxleyi: its determination and implication in the marine carbon cycle. Microchemical Journal 2009, 91(2):266-271.
Goldman J.C., Caron D.A., Dennett M.R. Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnology and Oceanography 1987, 32:1232-1239.
Harlay J., Borges A.V., Van Der Zee C., Delille B., Godoi R.H.M., Schiettecatte L.-S., Roevros N., Aerts K., Lapernat P.-E., Rebreanu L., Groom S., Daro M.-H., Van Grieken R., Chou L. Biogeochemical study of a coccolithophorid bloom in the northern Bay of Biscay (NE Atlantic Ocean) in June 2004. Progress in Oceanography 2010, 86:317-336.
Harlay J., L. Chou, C. De Bodt, N. Van Oostende, J. Piontek, K. Suykens, A. Engel, K. Sabbe, S. Groom, B. Delille, A.V. Borges (2011) Biogeochemistry and carbon mass balance of a coccolithophore bloom in the northern Bay of Biscay (June 2006), Deep-Sea Research I, accepted.
Jacquet S., Heldal M., Iglesias-Rodriguez D., Larsen A., Wilson W., Bratbak G. Flow cytometric analysis of an emiliana huxleyi bloom terminated by viral infection. Aquatic Microbial Ecology 2002, 27:111-124.
Keir R.S. The dissolution kinetics of biogenic calcium carbonates in seawater. Geochim. Cosmochim. Acta 1980, 44:241-252.
Lancelot C., Stavena J., Van Eeckhout D., Beckers J., Stanev E. Modelling the danube influenced north-western continental shelf of the black sea. Ecosystem response to changes in nutrient delivery by danube river after its damming in 1972. Estuarine, Coastal and Shelf Science 2002, 54:473-499.
Mehrbach C., Culberson C., Hawley J., Pytkowicz R. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography 1973, 18:897-907.
Merico A., Tyrrell T., Lessard E., Oguz T., Stabeno P., Zeeman S., Whitledge T. Modelling phytoplankton succession on the bering sea shelf: role of the climate influences and trophic interactions in generating Emiliania huxleyi blooms 1997-2000. Deep-Sea Research Part I 2004, 10.1016/j.dsr.2004.07.003.
Millero F. Thermodynamics of the carbon dioxide system in the oceans. Geochimica et Cosmochimica Acta 1995, 59(4):661-677.
Morse J.W., Arvidson R.S. Dissolution kinetics of major sedimentary carbonate minerals. Earth Science Reviews 2002, 58:51-84.
Oguz T., Merico A. Factors controlling the summer Emiliania huxleyi bloom in the black sea: a modelling study. Journal of Marine Systems 2006, 59. 10.1016/j.jmarsys.2005.08.002:173-188.
Paasche E. Review of the coccolithophorid Emiliania huxleyi (prymnesiophyceae), with a particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 2002, 40(6):503-529.
Passow U. Transparent exopolymer particles (TEP) in aquatic environments. Progress in Oceanography 2002, 55:287-333.
Rochelle-Newall E., Delille B., et al. Chromophoric dissolved organic matter in experimental mesocosms maintained under different pCO2 levels. Marine Ecology Progress Series 2004, 272:25-31.
Schartau M., Engel A., Schröter J., Thoms S., Völker C., Wolf-Gladrow D. Modelling carbon overconsumption and the formation of extracellular particulate organic carbon. Biogeosciences 2007, 4:433-454.
Shaked Y., Xu Y., Leblanc K., Morel F. Zinc availability and alkaline phosphatase activity in Emiliania huxleyi: implications for Zn-P co-limitation in the ocean. Limnology and Oceanography 2006, 51(1):299-309.
Soetaert K., Herman P.M.J., Middelburg J.J., Heip C., Smith C.L., Tett P., Wild-Allen K. Numerical modelling of the shelf break ecosystem: reproducing benthic and pelagic measurements. Deep-Sea Research II 2001, 48:3141-3177.
Soetaert K., deClippele V., Herman P. Femme, a flexible environment for mathematically modelling the environment. Ecological Modelling 2002, 151:177-193.
Soetaert K., Hofmann F., Middelburg J., Meysman J., Greenwood J. The effect of biogeochemical processes on pH. Marine Chemistry 2007, 10.1016/j.marchem.2006.12.012.
Suykens K., Delille B., Chou L., De Bodt C., Harlay J., Borges A.V. Dissolved inorganic carbon dynamics and air-sea carbon dioxide fluxes during coccolithophore blooms in the Northwest European continental margin (northern Bay of Biscay). Global Biogeochemical Cycles 2010, 24:GB3022. 10.1029/2009GB003730.
Tett P., Wilson H. From biochemical to ecological models of marine phytoplankton. Journal of Marine Systems 2000, 25:431-446.
Toggweiller J. Carbon overconsumption. Nature 1993, 363:210-211.
Tyrrell T., Taylor A. A modelling study of Emiliania huxleyi in the NE Atlantic. Journal of Marine Systems 1996, 9:83-112.
Van Den Meersche K., Middelburg J., Soetaert K., Van Rijswijk P., Boschker H., Heip C. Carbon-nitrogen coupling and algal-bacterial interactions during an experimental bloom: modelling a 13C tracer experiment. Limnology and Oceanography 2004, 49:862-878.
Wanninkhof R. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 1992, 97:7373-7382.
Weiss R.F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry 1974, 2:203-215.
Xu Y., Wahlund T., Feng L., Shaked Y., Morel F. A novel alkaline phosphatase in the coccolithophore Emiliania huxleyi (prymnesiophyceae) and its regulation by phosphorus. Journal of Phycology 2006, 42(4):835-844.
Zondervan I. The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores. Deep-Sea Research II 2007, 54:521-537.