[en] This paper presents the sintering behaviour of a La0.9Sr0.1Ga0.8Mg0.2O2.85 coral-like microstructure powder. This is prepared by a successive freeze-drying and self-ignition process followed by calcination at 1200 ◦C during 1 h. This synthesis method gives great uniformity of the powder and allows shaping into compacts without requiring a grinding step. The grain size distribution (between 0.5 and 4 m) favours a good sintering behaviour: open porosity disappear at 1400 ◦C and relative densities over 99% can be achieved after 6 h at 1450 ◦C. The same powder can also be sintered into a thin disc of ∼100 mthickness. The characterization of the dense material by impedance spectroscopy shows that the activation energies below and above 600 ◦C are 1.0 eV and 0.7 eV, respectively. The conductivity at 800 ◦C is ∼0.11 S cm−1. Special attention is devoted to the temperature range between 200 ◦C and 400 ◦C, where the intragrain and intergrain contributions can be distinguished. The analysis of the parameters describing the intragrain constant phase element in the equivalent circuit suggests that, above 325 ◦C, the system evolves from a distribution of relaxation time to only one relaxation time. The analysis of the data by the complexes permittivity show that ionic oxide conduction mechanism would occur in two steps. In the first, an oxygen vacancy would be released and, in the second, the migration of the ionic oxide would take place in the material.
Disciplines :
Chemistry
Author, co-author :
Traina, Karl ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
Henrist, Catherine ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
Vertruyen, Bénédicte ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie inorganique structurale
Cloots, Rudi ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT - Doyen de la Faculté des Sciences
Language :
English
Title :
Dense La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte for IT-SOFC's: Sintering study and electrochemical characterization
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
P. Singh, and N.Q. Minh Int. J. Appl. Ceram. Technol. 1 2004 5 15
A. Weber, and E. Ivers-Tiffée J. Power Sources 127 2004 273 283
D. Bernache-Assollant Chimie-physique du frittage 1993 Hermes Paris
M.N. Rahaman Ceramic Processing and Sintering 2003 Marcel Dekker Basel, New York pp. 1-875
J. Drennan, V. Zelizko, D. Hay, F.T. Ciacchi, S. Rajendran, and S.P.S. Badwal J. Mater. Chem. 7 1997 79 83
F. Chen, and M. Liu J. Solid State Electrochem. 3 1998 7 14
K. Yamaji, T. Horita, M. Ishikawa, N. Sakai, and H. Yokokawa Solid State Ionics 121 1999 217 224
A.M. Azad, and L.F. Er J. Alloys Compd. 306 2000 103 112
K. Huang, and J.B. Goodenough J. Solid State Chem. 136 1998 274 283
A.C. Tas, P. Majewski, and F. Aldinger J. Am. Ceram. Soc. 83 2000 2954 2960
P. Majewski, M. Rozumek, A.C. Tas, and F. Aldinger J. Electroceram. 8 2002 65 73
S. Zha, C.R. Xia, X. Fang, H.B. Wang, D. Peng, and G.Y. Meng Ceram. Int. 27 2001 649 654
D. Lybye, and K. Nielsen Solid State Ionics 167 2004 55 63
D. Lee, J.H. Han, Y. Chun, R.H. Song, and D.R. Shin J. Power Sources 166 2007 35 40
X.Q. Ma, H. Zhang, J. Dai, J. Roth, R. Hui, T.D. Xiao, and D.E. Reisner J. Therm. Spray Technol. 14 2005 61 66
B. Rambabu, S. Ghosh, W. Zhao, and H. Jena J. Power Sources 159 2006 21 28
Z. Bi, M. Cheng, Y.L. Dong, H. Wu, Y. She, and B. Yi Solid State Ionics 176 2005 655 661
M. Matsuda, O. Ohara, K. Murata, S. Ohara, T. Fukui, and M. Miyake Electrochem. Solid State Lett. 6 2003 A140 A143
Y. Du, and N.M. Sammes J. Eur. Ceram. Soc. 21 2001 727 735
I. Natali Sora, R. Pelosato, A. Simone, L. Montanaro, F. Maglia, and G. Chiodelli Solid State Ionics 177 2006 1985 1989
M. Shi, Y.D. Xu, C. Wang, Y.P. Yuan, P. Majewski, and F. Aldinger J. Mater. Process. Technol. 169 2005 179 183
K. Traina, M.C. Steil, J.P. Pirard, C. Henrist, A. Rulmont, R. Cloots, and B. Vertruyen J. Eur. Ceram. Soc. 27 2007 3469 3474
J.W. Stevenson, T.J. Armstrong, D.E. McCready, L.R. Pederson, and W.J. Weber J. Electrochem. Soc. 144 1997 3613 3620
S.V. Kesapragada, S.B. Bhaduri, S. Bhaduri, and P. Singh J. Power Sources 124 2003 499 504
K. Huang, M. Feng, and J.B. Goodenough J. Am. Ceram. Soc. 79 1996 1100 1104
T. Fukui, S. Ohara, K. Murata, H. Yoshida, K. Miura, and T. Inagaki J. Power Sources 106 2002 142 145
J.R. MacDonald Impedance Spectroscopy: Emphasizing Solid Materials and Systems 1987 John Wileys & Sons New York, Chichester, Brisbane, Toronto, Singapore
S.P.S. Badwal, and J. Drennan J. Mater. Sci. 22 1987 3231 3239
M.J. Verkerk, and A.J. Burggraaf J. Electrochem. Soc. 130 1983 78 84
D.I. Bronin, I.Y. Yaroslavtsev, H. Nafe, and F. Aldinger Electrochim. Acta 49 2004 2435 2441
L. Dessemond, R. Muccillo, M. Hénault, and M. Kleitz Appl. Phys. A 57 1993 57 60
E. Iguchi, S. Nakamura, F. Munakata, M. Kurumada, and Y. Fujie J. Appl. Phys. 93 2003 3662 3664
K. Huang, R.S. Tichy, and J.B. Goodenough J. Am. Ceram. Soc. 81 1998 2565 2575
M. Feng, and J.B. Goodenough Eur. J. Solid State Inorg. Chem. 31 1994 663 672
R. Polini, A. Pamio, and E. Traversa J. Eur. Ceram. Soc. 24 2004 1365 1370
P.N. Huang, and A. Petric J. Electrochem. Soc. 143 1996 1644 1648
J.T.S. Irvine, J.W.L. Dobson, T. Politova, S.G. Martin, and A. Shenouda Faraday Discussions 134 2007 41 49
M. Angeles-Rosas, M.A. Camacho-Lopez, and E. Ruiz-Trejo Solid State Ionics 181 2010 1349 1354
S. Lazure, Ch. Vernochet, R.N. Vannier, G. Nowogrocki, and G. Mairesse Solid State Ionics 90 1996 117 123
C. Pirovano, M.C. Steil, E. Capoen, G. Nowogrocki, and R.N. Vannier Solid State Ionics 176 2005 2079 2083
S. Beg, A. Al-Alas, and N.A.S. Al-Areqi J. Alloys Compd. 493 2010 299 304
G.J. Brug, A.L.G. Van Den Eeden, M. Sluyters-Rehbach, and J.H. Sluyters J. Electroanal. Chem. 176 1984 275 295
M.S. Islam, and R.A. Davies J. Mater. Chem. 14 2004 86 93
F.A. Kroger, and H.J. Vink Solid State Physics 1956 Academic press, Inc. New York
M. Kurumada, H. Hara, F. Munakata, and E. Iguchi Solid State Ionics 176 2005 245 251
R. Gerhardt J. Phys. Chem. Solids 55 1994 1491 1506
S. Komine, and F. Munakata J. Mater. Sci. 40 2005 3887 3890
H. Frölich Theory of Dielectric 1958 Clarendon Oxford
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.