Biegelbauer, G., Vincze, M.: Efficient 3D object detection by fitting superquadrics to range image data for robot's object manipulation. In: IEEE International Conference on Robotics and Automation (2007)
Hetzel, G., Leibe, B., Levi, P., Schiele, B.: 3D object recognition from range images using local feature histograms. In: Computer Vision and Pattern Recognition, pp. 394-399 (2001)
Campbell, R.J., Flynn, P.J.: A survey of free-form object representation and recognition techniques. Comput. Vis. Image Underst. 81, 166-210 (2001) (Pubitemid 32271703)
Solina, F., Bajcsy, R.: Recovery of parametric models from range images: The case for superquadrics with global deformations. IEEE Trans. Pattern Anal. Mach. Intell. 12, 131-147 (1990) (Pubitemid 20666139)
Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224-237. Springer, Heidelberg (2004)
Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21, 433-449 (1999)
Mian, A.S., Bennamoun, M., Owens, R.A.: Three-dimensional model-based object recognition and segmentation in cluttered scenes. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1584-1601 (2006) (Pubitemid 46405079)
Li, X., Guskov, I.: 3D object recognition from range images using pyramid matching. In: International Conference on Computer Vision, pp. 1-6 (2007)
Rusu, R., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: IEEE International Conference on Robotics and Automation (2009)
Detry, R., Pugeault, N., Piater, J.: A probabilistic framework for 3D visual object representation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1790-1803 (2009)
Li, X., Guskov, I.: Multi-scale features for approximate alignment of point-based surfaces. In: Eurographics Symposium on Geometry Processing (2005)
Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: 3D object modeling and recognition using local affine-invariant image descriptors and multi-view spatial constraints. Int. J. Comput. Vision 66, 231-259 (2006)
Collet, A., Berenson, D., Srinivasa, S., Ferguson, D.: Object recognition and full pose registration from a single image for robotic manipulation. In: IEEE International Conference on Robotics and Automation (2009)
Liang, P., Todhunter, J.S.: Representation and recognition of surface shapes in range images: A differential geometry approach. Computer Vision, Graphics, and Image Processing 52, 78-109 (1990) (Pubitemid 20734961)
Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC, Boca Raton (1986)
Fisher, R.A.: Dispersion on a sphere. Proc. Roy. Soc. London Ser. A (1953)
Andrieu, C., de Freitas, N., Doucet, A., Jordan, M.I.: An introduction to MCMC for machine learning. Machine Learning 50, 5-43 (2003)
Sudderth, E.B.: Graphical models for visual object recognition and tracking. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (2006)
Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics 6, 461-464 (1978)