Vanittanakom, N., W. Loeffler, U. Koch, and G. Jung. 1986. Fengycin - a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J. Antibiot. (Tokyo). 39:888-901.
Jacques, P., C. Hbid, J. Destain, H. Razafindralambo, M. Paquot, E. De Pauw, and P. Thonart. 1999. Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett-Burman design. Appl. Biochem. Biotechnol. 77-79:223-233.
Hbid, C. 1996. Contribution à l'étude de la relation entre la structure des lipopeptides de B. subtilis et leurs activités hémolytique et antifongique. PhD thesis. Université de Liège, Belgium.
Schneider, J., K. Taraz, H. Budzikiewicz, M. Deleu, P. Thonart, and P. Jacques. 1999. The structure of two fengycins from Bacillus subtilis S499. Z. Naturforsch [C]. 54:859-866.
Deleu, M., M. Paquot, and T. Nylander. 2005. Fengycin interaction with lipid monolayers at the air-aqueous interface - implications for the effect of fengycin on biological membranes. J. Colloid Interface Sci. 283:358-365.
Eeman, M., M. Deleu, M. Paquot, P. Thonart, and Y. Dufrene. 2005. Nanoscale properties of mixed fengycin/ceramide monolayers explored using atomic force microscopy. Langmuir. 21:2505-2511.
Zhmud, B., and F. Tiberg. 2005. Interfacial dynamics and structure of surfactant layers. Adv. Colloid Interface Sci. 113:21-42.
Silvander, M., G. Karlsson, and K. Edwards. 1996. Vesicle solubilization by alkyl sulfate surfactants: a cryo-TEM study of the vesicle to micelle transition. J. Colloid Interface Sci. 179:104-113.
Edwards, K., J. Gustafsson, M. Almgren, and G. Karlsson. 1993. Solubilization of lecithin vesicles by a cationic surfactant - intermediate structures in the vesicle micelle transition observed by cryo-transmission electron microscopy. J. Colloid Interface Sci. 161:299-309.
Brezesinski, G., and H. Mohwald. 2003. Langmuir monolayers to study interactions at model membrane surfaces. Adv. Colloid Interface Sci. 100-102:563-584.
Marsh, D. 1996. Lateral pressure in membranes. Biochim. Biophys. Acta. 1286:183-223.
Tiberg, F., I. Harwigsson, and M. Malmsten. 2000. Formation of model lipid bilayers at the silica-water interface by co-adsorption with nonionic dodecyl maltoside surfactant. Eur. Biophys. J. 29:196-203.
Vacklin, H. P., F. Tiberg, and R. K. Thomas. 2005. Formation of supported phospholipid bilayers, via co-adsorption with beta-D-dodecyl maltoside. Biochim. Biophys. Acta. 1668:17-24.
Razafindralambo, H., M. Paquot, C. Hbid, P. Jacques, and P. Thonart. 1993. Purification of antifungal lipopeptides by reversed-phase high-performance liquid chromatography. J. Chromatogr. 639:81-85.
Tyteca, D., A. Schanck, Y. Dufrene, M. Deleu, P. Courtoy, P. Tulkens, and M. Mingeot-Leclercq. 2003. The macrolide antibiotic azithromycin interacts with lipids and affects membrane organization and fluidity: studies on Langmuir-Blodgett monolayers, liposomes and J774 macrophages. J. Membr. Biol. 192:203-215.
Videira, R. A., M. C. Antunes-Madeira, and V. M. C. Madeira. 1999. Perturbations induced by α-and β-endosulfan in lipid membranes: a DSC and fluorescence polarization study. Biochim. Biophys. Acta. 1419:151-163.
Tiberg, F., and M. Landgren. 1993. Characterization of thin nonionic surfactant films at the silica/water interface by means of ellipsometry. Langmuir. 9:927-932.
Vacklin, H. 2003. Phospholipase A2 action at solid supported phospholipid membranes. PhD thesis. University of Oxford, Oxford, UK.
Demel, R. A., Y. London, W. S. M. Geurts van Kessel, F. G. A. Vossenberg., and L. L. M. Van Deenen. 1973. The specific interactions of myelin basic protein with lipids at the air-water interface. Biochim. Biophys. Acta. 311:507-519.
Blume, A. 1991. Biological calorimetry: membranes. Thermochim. Acta. 193:299-347.
Tahir, A., C. Gabrielle-Madelmont, C. Betrencourt, M. Ollivon, and P. Peretti. 1999. A differential scanning calorimetry study of the interaction of lasalocid antibiotic with phospholipid bilayers. Chem. Phys. Lipids. 103:57-65.
Heimburg, T. 1998. Mechanical aspects of membrane thermodynamics. Estimation of the mechanical properties of lipid membranes close to the chain melting transition from calorimetry. Biochim. Biophys. Acta. 1415:147-162.
Lichtenberg, D., M. Menashe, S. Donaldson, and R. L. Biltonen. 1984. Thermodynamic characterization of the pretransition of unilamellar dipalmitoyl-phosphatidylcholine vesicles. Lipids. 19:395-400.
Heimburg, T. 2000. A model for the lipid pretransition: coupling of ripple formation with the chain melting transition. Biophys. J. 78:1154-1165.
Csiszar, A., A. Bota, C. Novak, E. Klumpp, and G. Subklew. 2002. Calorimetric study of the effects of 2,4-dichlorophenol on the thermotropic phase behavior of DPPC liposomes. J. Therm. Anal. Calorim. 69:53-63.
Grau, A., J. C. Gómez Fernández, F. Peypoux, and A. Ortiz. 1999. A study on the interactions of surfactin with phospholipid vesicles. Biochim. Biophys. Acta. 1418:307-319.
Kell, H., J. F. Holzwarth, C. Boettcher, R. K. Heenan, and J. Vater. 2007. Physicochemical studies of the interaction of the lipoheptapeptide surfactin with lipid bilayers of L-α-dimyristoyl phosphatidylcholine. Biophys. Chem. 128:114-124.
Jain, M. K., and N. M. Wu. 1977. Effect of small molecules on the dipalmitoyl lecithin liposomal bilayer. III. Phase transition in lipid bilayer. J. Membr. Biol. 34:157-201.
Bonora, S., G. Fini, and B. Piccirilli. 2000. DSC study on the interaction between bis-2-(ethylhexyl) phthalate and other o-phthalic acid esters and dipalmitoyl phosphatidylcholine liposomes. J. Therm. Anal. Calorim. 61:731-743.
Vacklin, H. P., F. Tiberg, G. Fragneto, and R. K. Thomas. 2005. Composition of supported model membranes determined by neutron reflection. Langmuir. 21:2827-2837.
Grandbois, M., H. Clausen-Schauman, and H. Gaub. 1998. Atomic force microscope imaging of phospholipid bilayer degradation by phospholipase A2. Biophys. J. 74:2398-2404.
Johnson, S. J., T. M. Bayerl, D. C. McDermott, G. W. Adam, A. R. Rennie, R. K. Thomas, and E. Sackmann. 1991. Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons. Biophys. J. 59:289-294.
Benjamins, J.-W., K. Thuresson, and T. Nylander. 2005. Formation of a liquid crystalline phase from phosphatidylcholine at the oil-aqueous interface. Langmuir. 21:2804-2810.
Hauet, N., F. Artzner, F. Boucher, C. Grabielle-Madelmont, I. Cloutier, G. Keller, P. Lesieur, D. Durand, and M. Paternostre. 2003. Interaction between artificial membranes and enflurane, a general volatile anesthetic: DPPC-enflurane interaction. Biophys. J. 84:3123-3137.
Schnitzer, E., D. Lichtenberg, and M. Kozov. 2003. Temperature-dependence of the solubilization of dipalmitoylphosphatidylcholine (DPPC) by the non-ionic surfactant Triton X-100, kinetic and structural aspects. Chem. Phys. Lipids. 126:55-76.
Israelachvili, J. N., D. J. Mitchell, and B. W. Ninham. 1976. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc., Faraday Trans. 2. 72:1525-1568.
Lichtenberg, D. 1985. Characterization of the solubilization of lipid bilayers by surfactants. Biochim. Biophys. Acta. 821:470-478.
Andersson, M., L. Hammarström, and K. Edwards. 1995. Effect of bilayer phase transitions on vesicle structure and its influence on the kinetics of viologen reduction. J. Phys. Chem. 99:14531-14538.
Mitchell, D. J., and B. W. Ninham. 1981. Micelles, vesicles and microemulsions. J. Chem. Soc., Faraday Trans. 2. 77:601-629.
Dubois, M., V. Lizunov, A. Meister, T. Gulik-Krzywicki, J. Verbavatz, E. Perez, J. Zimmerberg, and T. Zemb. 2004. Shape control through molecular segregation in giant surfactant aggregates. Proc. Natl. Acad. Sci. USA. 101:15082-15087.
Johnsson, M., and K. Edwards. 2003. Liposomes, disks, and spherical micelles: aggregates structure in mixtures of gel phase phosphatidylcholines and poly(ethylene glycol)-phospholipids. Biophys. J. 85:3839-3847.
Vollhardt, D., and V. Fainerman. 2000. Penetration of dissolved amphiphiles into two-dimensional aggregating lipid monolayers. Adv. Colloid Interface Sci. 86:103-151.
Demel, R. A., W. S. M. Geurts Van Kessel, R. F. A. Zwaal, and B. Roefofsen. 1975. Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers. Biochim. Biophys. Acta. 406:97-107.
Coutinho, A., and M. Prieto. 2003. Cooperative partition model of nystatin interaction with phospholipid vesicles. Biophys. J. 84:3061-3078.
Simons, K., and G. van Meer. 1988. Lipid sorting in epithelial cells. Biochemistry. 27:6197-6202.
Simons, K., and E. Ikonen. 1997. Functional rafts in cell membranes. Nature. 387:569-572.
Brown, D. A., and E. London. 1998. Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 164:103-114.
Brown, D. A., and E. London. 1998. Function of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14:111-136.
Parasassi, T., E. Gratton, W. M. Yu, P. Wilson, and M. Levi. 1997. Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. Biophys. J. 72: 2413-2429.
Filippov, A., G. Orädd, and G. Lindblom. 2006. Sphingomyelin structure influences the lateral diffusion and raft formation in lipid bilayers. Biophys. J. 90:2086-2092.
Lindblom, G., G. Orädd, and A. Filippov. 2006. Lipid lateral diffusion in bilayers with phosphatidylcholine, sphingomyelin and cholesterol. An NMR study of dynamics and lateral phase separation. Chem. Phys. Lipids. 141:179-184.
Brown, D. A., and E. London. 2000. Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J. Biol. Chem. 275:17221-17224.
Schroeder, R., E. London, and D. Brown. 1994. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc. Natl. Acad. Sci. USA. 91:12130-12134.
Schroeder, R. J., S. N. Ahmed, Y. Zhu, E. London, D. A. Brown. 1998. Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains. J. Biol. Chem. 273:1150-1157.
Pralle, A., P. Keller, E. L. Florin, K. Simons, J. K. H. Horber. 2000. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148:997-1008.
Lichtenberg, D., R. J. Robson, and E. A. Dennis. 1983. Solubilization of phospholipids by detergents. Structural and kinetic aspects. Biochim. Biophys. Acta. 737:285-304.
Vinson, P. K., Y. Talmon, and A. Walter. 1989. Vesicle-micelle transition of phosphatidylcholine and octyl glucoside elucidated by cryotransmission electron microscopy. Biophys. J. 56:669-681.
Kragh-Hansen, U., M. Le Maire, and J. V. Moller. 1998. The mechanism of detergent solubilization of liposomes and protein-containing membranes. Biophys. J. 75:2932-2946.
Deleu, M., O. Bouffioux, H. Razafindralambo, M. Paquot, C. Hbid, P. Thonart, P. Jacques, and R. Brasseur. 2003. Interaction of surfactin with membranes: a computational approach. Langmuir. 19:3377-3385.
Ickenstein, L. M., M. C. Arfvidsson, D. Needham, L. D. Mayer, and K. Edwards. 2003. Disc formation in cholesterol-free liposomes during phase transition. Biophys. Biochim. Acta 1614.:135-138.
Sandström, M. C., E. Johansson, and K. Edwards. 2007. Structure of mixed micelles formed in PEG-lipid/lipid dispersions. Langmuir. 23:4192-4198.
Funari, S. S., B. Nuscher, G. Rapp, and K. Beyer. 2001. Detergent-phospholipid mixed micelles with a crystalline phospholipid core. Proc. Natl. Acad. Sci. USA. 98:8938-8943.
Plasencia, I., K. Keough, and J. Perez-Gil. 2005. Interaction of the N-terminal segment of pulmonary surfactant protein SP-C with interfacial phospholipid films. Biophys. Biochim. Acta. 1713:118-128.