[en] In most cells trans-activating NF-kappaB induces many inflammatory proteins as well as its own inhibitor, IkappaB-alpha, thus assuring a transient response upon stimulation. However, NF-kappaB-dependent inflammatory gene expression is persistent in asthmatic bronchi, even after allergen eviction. In the present report we used bronchial brushing samples (BBSs) from heaves-affected horses (a spontaneous model of asthma) to elucidate the mechanisms by which NF-kappaB activity is maintained in asthmatic airways. NF-kappaB activity was high in granulocytic and nongranulocytic BBS cells. However, NF-kappaB activity highly correlated to granulocyte percentage and was only abrogated after granulocytic death in cultured BBSs. Before granulocytic death, NF-kappaB activity was suppressed by simultaneous addition of neutralizing anti-IL-1beta and anti-TNF-alpha Abs to the medium of cultured BBSs. Surprisingly, IkappaB-beta, whose expression is not regulated by NF-kappaB, unlike IkappaB-alpha, was the most prominent NF-kappaB inhibitor found in BBSs. The amounts of IkappaB-beta were low in BBSs obtained from diseased horses, but drastically increased after addition of the neutralizing anti-IL-1beta and anti-TNF-alpha Abs. These results indicate that sustained NF-kappaB activation in asthmatic bronchi is driven by granulocytes and is mediated by IL-1beta and TNF-alpha. Moreover, an imbalance between high levels of IL-1beta- and TNF-alpha-mediated IkappaB-beta degradation and low levels of IkappaB-beta synthesis is likely to be the mechanism preventing NF-kappaB deactivation in asthmatic airways before granulocytic death.
Disciplines :
Biochemistry, biophysics & molecular biology Veterinary medicine & animal health
Author, co-author :
Bureau, Fabrice ; Université de Liège - ULiège > Département de sciences fonctionnelles > Physiologie
Delhalle, Sylvie; Université de Liège - ULiège > Département de sciences fonctionnelles > Physiologie
Bonizzi, Giuseppina; Université de Liège - ULiège > Laboratory of Medical Chemistry/Medical Oncology
Fievez, Laurence ; Université de Liège - ULiège > Département de sciences fonctionnelles > Physiologie
Dogne, Sophie; Université de Liège - ULiège > Département de sciences fonctionnelles > Physiologie
Kirschvink, Nathalie; Université de Liège - ULiège > Département de sciences fonctionnelles > Physiologie
Barnes P.J. (1996) Pathophysiology of asthma. Br. J. Clin. Pharmacol. 42:3.
Zhang D.-H., Yang L., Cohn L., Parkyn L., Homer R., Ray P., Ray A. (1999) Inhibition of allergic inflammation in a murine model of asthma by expression of a dominant-negative mutant of GATA-3. Immunity 11:473.
Ray A., Cohn L. (1999) Th2 cells and GATA-3 in asthma: New insights into the regulation of airway inflammation. J. Clin. Invest. 104:985.
Barnes P.J., Adcock I.M. (1998) Transcription factors and asthma. Eur. Respir. J. 12:221.
Baeuerle P.A., Baichwal V.R. (1997) NF-κB as a frequent target for immunosuppressive and anti-inflammatory molecules. Adv. Immunol. 65:111.
Ray A., Prefontaine K.E. (1994) Physical association and functional antagonism between the p65 subunit of transcription factor NF-κB and the glucocorticoid receptor. Proc. Natl. Acad. Sci. USA 91:752.
Caldenhoven E., Liden J., Wissink S., Van de Stolpe A., Raaijmakers J., Koenderman L., Okret S., Gustafsson J.-A., Van der Saag P.T. (1995) Negative cross-talk between relA and the glucocorticoid receptor: A possible mechanism for the antiinflammatory action of glucocorticoids. Mol. Endocrinol. 9:401.
Siebenlist U., Franzoso G., Brown K. (1994) Structure, regulation and function of NF-κB. Annu. Rev. Cell. Biol. 10:405.
Whiteside S.T., Epinat J.-C., Rice N.R., Israel A. (1997) I kappa B epsilon, a novel member of the IκB family, controls RelA and cRel NF-κB activity. EMBO J. 16:1413.
Beg A.A., Finco T.S., Nantermet P.V., Baldwin A.S. Jr. (1993) Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of IκBα: A mechanism for NF-κB activation. Mol. Cell. Biol. 13:3301.
Hart L.A., Krishnan V.L., Adcock I.M., Barnes P.J., Chung K.F. (1998) Activation and localization of transcription factor, nuclear factor-κB, in asthma. Am. J. Respir. Crit. Care Med. 158:1585.
Yang L., Cohn L., Zhang D.-H., Homer R., Ray A., Ray P. (1998) Essential role of nuclear factor κB in the induction of eosinophilia in allergic airway inflammation. J. Exp. Med. 188:1739.
Donovan C.E., Mark D.A., He H.Z., Liou H.-C., Kobzik L., Wang Y., De Sanctis G.T., Perkins D.L., Finn P.W. (1999) NF-κB/Rel transcription factors: c-Rel promotes airway hyperresponsiveness and allergic pulmonary inflammation. J. Immunol. 163:6827.
Robinson N.E., Derksen F.J., Olszewski M.A., Buechner-Maxwell V.A. (1996) The pathogenesis of chronic obstructive pulmonary disease of horses. Br. Vet. J. 152:283.
Bureau F., Bonizzi G., Kirschvink N., Delhalle S., Desmecht D., Merville M.-P., Bours V., Lekeux P. (2000) Correlation between nuclear factor-κB activity in bronchial brushing samples and lung dysfunction in an animal model of asthma. Am. J. Respir. Crit. Care Med. 161:1314.
Art T., Lekeux P., Gustin P., Desmecht D., Amory H., Paiva M. (1989) Inertance of the respiratory system in ponies. J. Appl. Physiol. 67:534.
Dejardin E., Bonizzi G., Bellahcene A., Castronovo V., Merville M.-P., Bours V. (1995) Highly expressed p100/p52 (NFKB2) sequesters other NF-κB-related proteins in the cytoplasm of human breast cancer cells. Oncogene 11:1835.
Thompson J.E., Phillips R.J., Erdjument-Bromage H., Tempst P., Ghosh S. (1995) IκB-β regulates the persistent response in a biphasic activation of NF-κB. Cell 80:573.
Ballard D.W., Walker W.H., Doerre S., Sista P., Molitor J.A., Dixon E.P., Peffer N.J., Hannink M., Greene W.C. (1990) The v-rel oncogene encodes a κB enhancer binding protein that inhibits NF-κB function. Cell 63:803.
Brown K., Park S., Kanno T., Franzoso G., Siebenlist U. (1993) Mutual regulation of the transcriptional activator NF-κB and its inhibitor, IκB-α. Proc. Natl. Acad. Sci. USA 90:2532.
Scott M.L., Fujita T., Liou H.-C., Nolan G.P., Baltimore D. (1993) The p65 subunit of NF-κB regulates IκB by two distinct mechanisms. Genes Dev. 7:1266.
Ghosh S., May M.J., Kopp E.B. (1998) NF-κB and Rel proteins: Evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16:225.
Hohmann H.-P., Remy R., Scheidereit C., Van Loon A.P.G.M. (1991) Maintenance of NF-κB activity is dependent on protein synthesis and the continuous presence of external stimuli. Mol. Cell. Biol. 11:259.
Gleich G. (1990) The eosinophil and bronchial asthma: Current understanding. J. Allergy Clin. Immunol. 85:422.
Bousquet J., Chanez P., Lacoste J.Y., Barneon G., Ghavanian N., Enander I., Venge P., Ahlstedt S., Simony-Lafontaine J., Godard P. (1990) Eosinophilic inflammation in asthma. N. Engl. J. Med. 323:1033.
Walker C., Kaegi M.K., Braun P., Blaser K. (1991) Activated T cells and eosinophilia in bronchoalveolar lavages from subjects with asthma correlated with disease severity. J. Allergy Clin. Immunol. 88:935.
Woolley K.L., Gibson P.G., Carty K., Wilson A.J., Twaddell S.H., Woolley M.J. (1996) Eosinophil apoptosis and the resolution of airway inflammation in asthma. Am. J. Respir. Crit. Care Med. 154:237.
Haslett C. (1999) Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am. J. Respir. Crit. Care Med. 160.
Murray J., Barbara J.A., Dunkley S.A., Lopez A.F., Van Ostade X., Condliffe A.M., Dransfield I., Haslett C., Chilvers E.R. (1997) Regulation of neutrophil apoptosis by tumor necrosis factor-α: Requirement for TNFR55 and TNFR75 for induction of apoptosis in vitro. Blood 90:2772.
Ward C., Dransfield I., Chilvers E.R., Haslett C., Rossi A. (1999) Pharmacological manipulation of granulocyte apoptosis: Potential therapeutic targets. Trends Pharmacol. Sci. 20:503.
Baeuerle P.A. (1998) Pro-inflammatory signaling: Last pieces in the NF-κB puzzle?. Curr. Biol. 8.
Tiku K., Tiku M.L., Skosey J.L. (1986) Interleukin 1 production by human polymorphonuclear neutrophils. J. Immunol. 136:3677.
Goh K., Furusawa S., Kawa Y., Negishi Okitsu S., Mizoguchi M. (1989) Production of interleukin-1-α and -β by human peripheral polymorphonuclear neutrophils. Int. Arch. Allergy Appl. Immunol. 88:297.
Lindemann A., Riedel D., Oster W., Ziegler-Heitbrock H.W.L., Mertelsmann R., Herrmann F. (1989) Granulocyte-macrophage colony-stimulating factor induces cytokine secretion by human polynuclear leukocytes. J. Clin. Invest. 83:1308.
Lentsch A.B., Czermak B.J., Bless N.M., Ward P.A. (1998) NF-κB activation during IgG immune complex-induced lung injury: Requirements for TNF-α and IL-1β but not complement. Am. J. Pathol. 152:1327.
Lentsch A.B., Jordan J.A., Czermak B.J., Diehl K.M., Younkin E.M., Sarma V., Ward P.A. (1999) Inhibition of NF-κB activation and augmentation of IκBβ by secretory leukocyte protease inhibitor during lung inflammation. Am. J. Pathol. 154:239.
Hirano F., Chung M., Tanaka H., Maruyama N., Makino I., Moore D.D., Scheidereit C. (1998) Alternative splicing variants of IκBβ establish differential NF-κB signal responsiveness in human cells. Mol. Cell. Biol. 18:2596.
Simeonidis S., Liang S., Chen G., Thanos D. (1997) Cloning and functional characterization of mouse IκBε. Proc. Natl. Acad. Sci. USA 94:14372.
Suyang H., Phillips R., Douglas I., Ghosh S. (1996) Role of unphosphorylated, newly synthesized IκBβ in persistent activation of NF-κB. Mol. Cell. Biol. 16:5444.
Phillips R.J., Ghosh S. (1997) Regulation of IκBβ in WEHI 231 mature B cells. Mol. Cell. Biol. 17:4390.
DeLuca C., Petropoulos L., Zmeureanu D., Hiscott J. (1999) Nuclear IκBβ maintains persistent NF-κB activation in HIV-1-infected myeloid cells. J. Biol. Chem. 274:13010.
Good L., Sun S.-C. (1996) Persistent activation of NF-κB/Rel by human T-cell leukemia virus type 1 tax involves degradation of IκBβ. J. Virol. 70:2730.
Verma I.M., Stevenson J.K., Schwarz E.M., Van Antwerp D., Miyamoto S. (1995) Rel/NF-κB/IκB family: Intimate tales of association and dissociation. Genes Dev. 9:2723.