[en] In Morocco, no operational system actually exists for the early prediction of the grain yields of wheat (Triticum aestivum L.). This study proposes empirical ordinary least squares regression models to forecast the yields at provincial and national levels. The predictions were based on dekadal (10-daily) NDVI/AVHRR, dekadal rainfall sums and average monthly air temperatures. The Global Land Cover raster map (GLC2000) was used to select only the NDVI pixels that are related to agricultural land. Provincial wheat yields were assessed with errors varying from 80 to 762 kg ha 1, depending on the province. At national level, wheat yield was predicted at the third dekad of April with 73 kg ha 1 error, using NDVI and rainfall. However, earlier forecasts are possible, starting from the second dekad of March with 84 kg ha 1 error, at least 1 month before harvest. At the provincial and national levels, most of the yield variation was accounted for by NDVI. The proposed models can be used in an operational context to early forecast wheat yields in Morocco.
Tychon, Bernard ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement > Département des sciences et gestion de l'environnement
EERENS, Herman
JLIBENE, Mohammed
Language :
English
Title :
Empirical regression models using NDVI, rainfall and temperature data for the early prediction of wheat grain yields in Morocco
Publication date :
2008
Journal title :
International Journal of Applied Earth Observation and Geoinformation
Aboudrare A., Bouaziz A., and Debaeke P. Recherche de stratégies de conduite du tournesol dans les conditions pluviales de la région de Meknès (Maroc) I. Calage et test du modèle Epic-Phase. Sécheresse 10 (1999) 263-271
Amri A., E1 Bouhssini M., Lhaloui S., Cox T.S., and Hatchett J.H. Estimates of yield loss due to Hessian fly (Diptera: Cecidomyiidae) on bread wheat using near-isogenic lines. AI Awamia 77 (1992) 75-87
Bahir M., Mennani A., Jalal M., and Fakir Y. The impact of drought on the aquifer supplying the Moroccan town of Essaouira with drinking water. Sécheresse 13 (2002) 13-19
Bakker M.M., Govers G., Ewert F., Rounsevell M., and Jones R. Variability in regional wheat yields as a function of climate, soil and economic variables: assessing the risk of confounding. Agric. Ecosys. Environ. 110 (2005) 195-209
Balaghi R. Suivi de l'évolution des réserves en eau sous culture de blé en région semi-aride marocaine: Calibration et utilisation du modèle SOIL. Mémoire de Diplôme d'Etudes Approfondies (2000), Université de Liège, Belgium
Barakat F., and Handoufe A. Approche agroclimatique de la sécheresse agricole au Maroc. Sécheresse 9 (1998) 201-208
Benedetti R., and Rossinni P. On the use of NDVI profiles as a tool for agricultural statistics: the case study of wheat yield estimate and forecast in Emilia Romagna. Remote Sens. Environ. 45 (1993) 311-326
Bochenek Z. Operation use of NOAA data for crop condition assessment in Poland. In: Casanova J.L. (Ed). Remote Sensing in the 21st Century: Economic and Environmental Applications (2000), Balkema, Rotterdam 387-392
Duchemin B., Hadria R., Erraki S., Boulet G., Maisongrande P., Chehbouni A., Escadafal R., Ezzahar J., Hoedjes J.C.B., Kharrou M.H., Khabba S., Mougenot B., Olioso A., Rodriguez J.C., and Simonneaux V. Monitoring wheat phenology and irrigation in Central Morocco: on the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agric. Water Manage. 79 (2006) 1-27
El Jihad M.D. Aspects and frequencies of seasonal droughts in the Upper basin of the Oum er Rbia (central Morocco). Sécheresse 14 (2003) 157-167
FAOSTAT, 2005. [Online] Available from Food and Agriculture Organization of the United Nations. http://faostat.fao.org/
Foody G.M. Geographical weighting as a further refinement to regression modelling: an example focused on the NDVI-rainfall relationship. Remote Sens. Environ. 88 (2003) 283-293
Genovese G., Vignolles C., Nègre T., and Passera G. A methodology for a combined use of normalised difference vegetation index and CORINE land cover data for crop yield monitoring and forecasting. A case study on Spain. Agronomie 21 (2001) 91-111
Genovese, G., Bettio, M., Fritz, S., 2006. Report on yield Inter-comparison study, JRC/GEOLAND Internal Report. European Commission, Joint Research Centre, Institute for the Protection and Security of the Citizen, AgriFish Unit, Via Fermi 1, 21020 Ispra, Italy, p. 156.
Haut Commissariat au Plan, 2003. Le Maroc en chiffres 2003. Direction de la statistique. Rabat, p. 140.
Haut Commissariat au Plan, 2005. Résultats d'exploitation des cahiers de la population légale dans le Cadre du Recensement Général de la Population et de l'Habitat 2004. Rabat. http://www.recensement.hcp.ma/article.php3?id_article=332.
Jones D.R. A statistical inquiry into crop-weather dependence. Agric. Meteorol. 26 (1982) 91-104
Kefyalew G., Martin K.L., Anderson R.H., Arnall D.B., Brixey K.D., Casillas M.A., Chung B., Dobey B.C., Kamenidou S., Kariuki S.K., Katsalirou E.E., Morris J.C., Moss J.Q., Rohla C.T., Sudbury B.J., Tubana B.S., and Raun W.R. Mid-season prediction of wheat grain yield potential using plant, soil, and sensor measurements. J. Plant Nutr. 29 (2006) 873-897
Kogan F.N. Contribution of remote sensing to drought early warning. In: Wilhite D.A., Sivakumar M.V.K., and Deborah A.W. (Eds). Early Warning Systems for Drought Preparedness and Drought Management (2000), World Meteorological Organization, Lisbon 86-100
Kogan F.N. Operational space technology for global vegetation assessment. Bull. Am. Meteorol. Soc. 82 (2001) 1950-1964
Kutner M.H., Nachtsheim C.J., Neter J., and Li W. Applied Linear Statistical Models. fifth ed. (2005), McGraw-Hill, New York
Ma B.L., Dwyer L.M., Costa C., Cober E.R., and Morrison M.J. Early prediction of soybean yield from canopy reflectance measurements. Agron. J. 93 (2001) 1227-1234
Maselli F., Romanelli S., Bottai L., and Maracchi G. Processing of GAC NDVI data for yield forecasting in the Sahelian region. Int. J. Remote Sens. 21 (2000) 3509-3523
Mayaux P., Bartholomé E., Fritz S., and Belward A. A new land-cover map of Africa for the year 2000. J. Biogeogr. 31 (2004) 861-877
Mo X., Liu S., Lin Z., Xu Y., Xiang Y., and McVicar T.R. Prediction of crop yield, water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain. Ecol. Model. 183 (2005) 301-322
Oroda A. The international archives of the photogrammetry. Remote Sens. Spatial Inform. Sci. XXXIV (2001) 66-72 Part 6/W6
Prasad A.K., Chai L., Singh R.P., and Kafatos M. Crop yield estimation model for Iowa using remote sensing and surface parameters. Int. J. Appl. Earth Obs. Geoinf. 8 (2006) 26-33
Quarmby N.A., Milnes M., Hindle T.L., and Silicos N. The use of multitemporal NDVI measurements from AVHRR data for crop yield estimation and prediction. Int. J. Remote Sens. 14 (1993) 199-210
Rodriguez J.C., Duchemin B., Hadria R., Watts C., Garatuza J., Chehbouni A., Khabba S., Boulet G., Palacios E., and Lahrouni A. Wheat yield estimation using remote sensing and the STICS model in the semiarid Yaqui valley 24 (2004), Agronomie, Mexico pp. 295-304
Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., Harlan, J.C., 1974. Monitoring the vernal advancements and retrogradation (greenwave effect) of nature vegetation. NASA/GSFC Final Report. NASA, Greenbelt, MD, USA, pp. 1-137.
In: Royer A., and Genovese G. (Eds). Methodology of the MARS Crop Yield Forecasting System. Remote Sensing Information, Data Processing and Analysis, vol. 3 (2004), AgriFish unit, Joint Research Centre of the European Commission, Ispra, Italy. http://agrifish.jrc.it/marsstat/Crop_Yield_Forecasting%20METAMP/ p. 76, ISBN 92-894-8182-X (EUR 21291 EN/3), http://agrifish.jrc.it/marsstat/Crop_Yield_Forecasting METAMP/
Seiler R.A., Kogan F.N., and Wei G. Monitoring weather impact and crop yield from NOAA AVHRR data in Argentina. Adv. Space Res. 26 (2000) 1177-1185
Skees, J.R., Gober, S., Varangis, P., Lester, R., Kalavakonda, V., 2001. Developing Rainfall Based Index Insurance in Morocco. World Bank Policy Research Working Paper 2577. http://ideas.repec.org/p/wbk/wbrwps/2577.html.
Stoikos G. Sugar beet crop yield prediction using artificial neural networks. Proceedings of the Modern Automatic Control Technologies Conference. Athens (1995) 120-122
Unganai L.S., and Kogan F.N. Drought monitoring and corn yield estimation in southern Africa from AVHRR data. Remote Sens. Environ. 63 (1998) 219-232
Weissteiner C.J., and Kühbauch W. Regional Yield Forecasts of Malting Barley (Hordeum vulgare L) by NOAA-AVHRR remote sensing data and ancillary data. J. Agronomy Crop Sci. 191 (2005) 308-320
Wendroth O., Reuter H.I., and Kersebaum K.C. Predicting yield of barley across a landscape: a state-space modeling approach. J. Hydrol. 272 1-4 (2003) 250-263
Yacoubi M., Chbouki N., and Stockle C.O. Typologie de la sécheresse et recherché d'indicateurs d'alerte en climat semi-aride marocain. Sécheresse 9 (1998) 269-276