[en] A new method for calculating the anomalous transport in tokamak plasmas is presented. The renormalized nonlinear plasma response function is derived using the direct-interaction approximation (DIA). A complete calculation for the case of electrostatic drift-wave turbulence is presented. Explicit expressions for all coefficients of the anomalous transport matrix relating particle and heat fluxes to density and temperature gradients in the plasma are obtained. The anomalous transport matrix calculated using the DIA does not have the Onsager symmetry. As an example of application, the parameters of the Texas Experimental Tokamak (TEXT) [Nucl. Technol. Fusion 1, 479 (1981)] are used to evaluate all transport coefficients numerically, as well as the spectrum modulation. The relation between the theoretical results and the experimental data is discussed. Although this paper focuses on electron transport for simplicity, the method can also be used to calculate anomalous transport due to ion instabilities, such as the ion-temperature-gradient instability.
Disciplines :
Physics
Author, co-author :
Thoul, Anne ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astrophysique stellaire théorique et astérosismologie
SIMILON, P. L.
SUDAN, R. N.
Language :
English
Title :
ANOMALOUS PERTURBATIVE TRANSPORT IN TOKAMAKS DUE TO DRIFT-WAVE TURBULENCE
Yu C.X., Brower D.L., Zhao S.J., Peebles W.A., Luhmann N.C., Bravenec R.V., Chen J.Y., Lin H., Ritz C.P., Schoch P.M., Yang X.Z. Phys. Fluids B 1992, 4:381.
Nicholson D.R. Introduction to Plasma Theory, (Wiley, New York); 1983.
Ejima S. (1982) the Doublet III Group. Nucl. Fusion 22:1627.
Greenwald M., Gwinn D., Milora S., Parker J., Parker R., Wolfe S. Plasma Physics and Controlled Nuclear Fusion Research 1984, Proceedings of the 10th International Conference, London , International Atomic Energy Agency, Vienna; 1985, I:45.
TEXT Group, Nucl. Technol. Fusion 1981, 1:479.
Brower D.L., Peebles W.A., Kim S.K., Luhmann N.C., Tang W.M., Phillips P.E. Phys. Rev. Lett. 1987, 59:49.
Rechester A.B., Rosenbluth M.N. Phys. Rev. Lett. 1978, 40:38.
Waltz R.E., Pfeiffer W., Dominguez R.R. Nucl. Fusion 1980, 20:43.
Waltz R.E. Phys. Fluids 1982, 25:269.
Shaing K.C. Phys. Fluids 1988, 31:2249.
Kadomtsev B.B. Plasma Turbulence, (Academic, New York); 1965.
Fredrickson E.D., Callen J.D., McGuire K., Bell J.D., Colchin R.J., Efthimion P.C., Hill K.W., Izzo R., Mikkelsen D.R., Monticello D.A., Par V., Taylor G., Zamstorff M. Nucl. Fusion 1986, 26:849.
Tubbing B.J.D., Lopes Cardozo N.J., Van der Wiel M.J. Nucl. Fusion 1987, 27:1843.
Kim S.K., Brower D.L., Peebles W.A., Luhmann N.C. Phys. Rev. Lett. 1988, 60:577.
de Haas J.C.M., O'Rourke J., Sips A.C.C., Lopes Cardozo N.J. Joint European Torus JET Report ♯JET-R(90)04, National Technical Information Service, Springfield, VANTIS Document No. DE91616771; 1990.
Brower D.L., Kim S.K., Wenzel K.W. Phys. Rev. Lett. 1990, 65:337.
Miyamoto K. Plasma Physics for Nuclear Fusion , (MIT Press, Cambridge, MA)332-333; 1980, 61-65.
Note that even though the magnetic shear is important in the linear theory of drift waves, where it has a stabilizing effect, it might not be important in the strong turbulence limit., Indeed, in this limit, the mode will lose its energy due to the dissipation mechanism (here the ion viscosity) before it can be stabilized by the magnetic shear; .
Gross R.A. Fusion Energy , (Wiley-Interscience, New York); 1984, 83-114.
Hasegawa A., Mima K. Phys. Rev. Lett. 1977, 9:205.
Hasegawa A., Mima K. Phys. Fluids 1978, 21:87.
In reality, the plasma is not neutral, but only quasineutral., Therefore,there is a mean radial electric potential [formula omitted] However, it only creates a global rotation of the plasma, i.e., a Doppler shift of the frequency, and can therefore be eliminated by going into the frame of the rotating plasma, so that [formula omitted] and [formula omitted]; .
Note that [formula omitted]..
Bhatnagar P.L., Gross E.P., Krook M. Phys. Rev. 1954, 94:511.
Callen J.D., Jahns G.L. Phys. Rev. Lett. 1977, 38:491.
Soler M., Callen J.D. Nucl. Fusion 1979, 19:703.
Wesson J.A. Tokamaks, (Oxford Science Publications, Oxford); 1987.
Bravenec R.V., Ross D.W., Schoch P.M., Brower D.L., Heard J.W., Hickok R.L., Yang X.Z. Bull. Am. Phys. Soc. 1990, 35:2026.
Crowley T.P. Rev. Sci. Instrum. 1990, 61:2989.
Ross D.W. Bull. Am. Phys. Soc. 1990, 35:2127.
We need to have dissipation at the long wavelengths in order to satisfy the condition [formula omitted] at all k., The molecular viscosity provides the necessary dissipation at the small scales. Therefore, the eddy viscosity damping [formula omitted] should be written as [formula omitted] where [formula omitted] the molecular viscosity, is a small constant; .
Waltz R.E., Dominguez R.R. Phys. Fluids B 1989, 1:1935.
Onsager L. Phys. Rev. 1931, 37:405.
Onsager L. Phys. Rev. 1931, 38:2265.
Balescu R. Phys. Fluids B 1990, 3:564.
Molvig K., Hizadinis K. Phys. Fluids 1984, 27:2847.