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A new method for calculating the anomalous transport in tokamak plasmas is presented. The 
renormalized nonlinear plasma response function is derived using the direct-interaction 
approximation (DIA). A complete calculation for the case of electrostatic drift-wave turbulence 
is presented. Explicit expressions for all coefficients of the anomalous transport matrix relating 
particle and heat fluxes to density and temperature gradients in the plasma are obtained. The 
anomalous transport matrix calculated using the DIA does not have the Onsager symmetry. As 
an example of application, the parameters of the Texas Experimental Tokamak (TEXT) [Nuc!. 
Technol. Fusion 1, 479 (1981)] are used to evaluate all transport coefficients numerically, as 
well as the spectrum modulation. The relation between the theoretical results and the 
experimental data is discussed. Although this paper focuses on electron transport for simplicity, 
the method can also be used to calculate anomalous transport due to ion instabilities, such as the 
ion-temperature-gradient instability. 

r. INTRODUCTION 

To sustain thermonuclear reactions in a tokamak, the 
plasma must be confined well enough to overcome heat 
losses. The confinement of the energy for a long enough 
time is a major difficulty in magnetic fusion. 

It is well known that classical calculations of heat dif­
fusion based on kinetic theory (using, for example, the 
Fokker-Planck or Balescu-Lenard collision operators; see, 
e.g., Braginskii1 or Hinton2) yield transport coefficients 
which are in complete disagreement with observations. 80-
called "neoclassical" transport theories are still based on 
classical collisional processes, but take into account the 
toroidal geometry of a tokamak. 3,4 According to neoclas­
sical theories, the electron heat conductivity is smaller than 
the ion heat conductivity by a factor ~melmi' However, 
measurements (in Ohmic discharges) indicate that, al­
though the ion heat transport appears to be well described 
by neoclassical results,5-7 the electron heat transport is 
sometimes as much as two orders of magnitude larger.5,8 

The energy transport is therefore completely dominated by 
the electrons in those cases. This so-called "anomalous 
transport" is the subject of this work. 

Today, the design of fusion reactors relies heavily on 
empirical scaling laws deduced from extrapolation of ex­
isting experimental data.9- 11 Unfortunately, these extrapo­
lations are unreliable, since the parameters of future reac­
tors are often very different from those of existing 
machines. A more fundamental understanding of transport 
in tokamak plasmas is therefore critical to the design of 
future generations of reactors. 12 Recent reviews on the 
present status of experiments and theoretical models can be 
found in Boozer et aZ., 13 Wootton et al., 14 Burrel et al., IS 

Houlberg et al., 16 and Kaye et al. 17 

It is now widely accepted that the anomalous transport 
in tokamaks results very likely from the presence of a sat­
urated spectrum of fluctuations in the plasma, produced by 
microscopic turbulence (see, e.g., the reviews by Tang,8 
Horton,18 and LiewerI9 ). For example, in the presence of 
fluctuating electric fields, transport of particles across the 
magnetic flux surfaces can occur through the EX B drift. 
In the presence of fluctuating magnetic fields, the magnetic 
flux surfaces are destroyed and electrons can flow outward 
along the perturbed field lines. Possible sources of turbu­
lent fluctuations include drift modes,20-23 dissipative 
trapped electron (DTE) modes,24 ion-temperature­
gradient modes,25,26 electron-temperature-gradient 
modes,27 and microtearing modes.28 

The relatively low frequency (cu;$ 0.5 MHz<!li' the 
ion Larmor frequency) of small-scale (k1 Pt;$l) density 
and potential fluctuations observed in some tokamak 
experiments29

-
32 suggests that drift waves and DTE modes 

may be responsible for the anomalous transport. Drift 
waves are unstable, low-frequency waves produced in any 
plasma having spatial inhomogeneities and a magnetic 
field. They propagate mainly in the direction perpendicular 
to both the density gradient and the magnetic field, but 
they have a finite parallel wave number, which allows elec­
trons to flow freely along the field lines. Their simplest 
dispersion relation is of the form cu = k • v * ' where 
v*=-(cT/eB)boX(Vnolno) is the diamagnetic drift ve­
locity (see, e.g., Nicholson33 ). Recently, it has become ev­
ident that the ion dynamics can also playa crucial role in 
the anomalous transport because of the ion temperature 
gradient ('TIt> instability.25,26 Indeed, it has been observed 
that the Ohmic confinement time saturates at high density 
an order of magnitude below the predictions of neoclassical 
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theory, indicating anomalous ion losses.34 In addition, it 
was observed that pellet injection improves the ion energy 
confinement, while leaving the anomalous electron thermal 
losses unchanged.35 Far-infrared laser scattering experi­
ments on the Texas Experimental Tokamak (TEXT)36 
showed that the onset of fluctuations propagating in the 
ion direction coincides with the saturation of the energy 
confinement time with density,37 which strongly suggests 
an association between the anomalous ion losses and the 
saturation of the energy confinement time. 

Many calculations of anomalous transport have been 
performed3!41 in the so-called "quasilinear" approxima­
tion of weak-turbulence theory (see, e.g., Kadomtsev42 and 
Sagdeev and Galeev43 ). In these calculations, the level of 
turbulence is assumed to be low enough so that the non­
linearities can be treated perturbatively. To obtain closure, 
the weak-turbulence expansion must be truncated to some 
order. The "quasilinear" theory corresponds to truncating 
this expansion to first order.42,43 The transport can be cal­
culated from correlations of fluctuations, obtained from the 
linearized equations. The important effect considered in 
quasilinear theory is the wave-particle interaction, but the 
mode-mode coupling terms are neglected. However, exper­
iments suggest that mode-mode coupling effects are, in 
fact, very important, and that the weak-turbulence condi­
tion is usually not satisfied.3o 

In a strongly turbulent plasma, the nonlinearities are 
essential and the perturbative approach of weak-turbulence 
theory fails. The goal of renormalized plasma turbulence 
theories is to simplify the nonlinear problem by attempting 
to describe only the macroscopic statistical averages of the 
fluctuations. Examples of such renormalization techniques 
include the "resonance broadening,,44 and "clump,,45 cal­
culations, as well as methods based on the direct interac­
tion approximation. 42.~9 Renormalization prescriptions 
are generally untested closure assumptions, which should 
be treated with caution. However, the direct interaction 
approximation (hereafter DIA) provides an exact descrip­
tion of certain stochastic models, such as the random­
coupling model 50 and the Langevin equation.SI Further­
more, the DIA method automatically satisfies the self­
consistency constraints arising from the strong coupling 
between electromagnetic fields and particle densities 
through Maxwell's equations. These constraints are not 
satisfied in quasilinear calculations. 

Since the DIA method is based on the evaluation of 
averaged infinitesimal response functions, it naturally pro­
vides the incremental./luxes resulting from small perturba­
tions of the equilibrium profiles, rather than total fluxes 
accross the magnetic surfaces. 52 It is therefore particularly 
well suited to comparisons with the recent gas puffing, pel­
let injection, and heat pulse propagation experi­
ments. 15•53-56 These experiments are performed either by 
using externally imposed modulated sources or by taking 
advantage of naturally occurring phenomena such as saw­
teeth oscillations. 56-59 In contrast to quasilinear calcula­
tions, we will show that the DIA formalism can also be 
used to study the modulation of the fluctuation spectrum 
caused by external modulated perturbations. Such spec-
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trum modulation measurements have been performed re­
cently in TEXT. 

Traditionally, the transport of particles and heat in 
tokamaks have been studied as two independent problems, 
with the particle flux related to the density gradient by 
Fick's law, r= - D Vn, and the heat flux expressed in 
terms of the temperature gradient as q= -nx VT. In these 
simple laws, the diffusion coefficient D was assumed to be 
independent of the temperature gradient, and the heat con­
ductivity X was assumed to be independent of the density 
gradient. However, recent experimental and theoretical 
studies have shown that it is incorrect to assume no cou­
pling between energy and particle transport.59-61 If the 
transport is due to turbulence, the coefficients D and X will 
be functions of the plasma parameters. Any theory of tur­
bulent transport should therefore produce a full transport 
matrix, including off-diagonal coefficients, rather than just 
two coefficients D and X (see Gentle et al. 61 ) . 

In this work, we use the DIA technique to calculate 
the transport matrix ( diagonal and off-diagonal coeffi­
cients) corresponding to perturbations in the density and 
temperature profiles. The theoretical expressions obtained 
for the transport coefficients are based on a specific set of 
equations describing the dynamics of the plasma and on 
the DIA, but do not require any further approximations. 

Even though the current interpretation of transport 
experiments in tokamaks is that the ion dynamics plays a 
crucial role in the anomalous thermal transport, we con­
centrate, for simplicity, on the role played by the electrons, 
and give the ions a secondary role in this paper. Our 
method can, in principle, account for the ion dynamics as 
well by choosing an appropriate form for the ion nonlinear 
susceptibility (see Sec. II). Here, however, detailed numer­
ical estimates are given only for a very simple ion suscep­
tibility, which does not necessarily represent the complete 
physics of anomalous transport in tokamaks. This choice is 
discussed in more details in Sees. III and IV. In addition, 
we use the simplest possible model for the electrons them­
selves, ignoring the complications coming from the toroi­
dal geometry, such as magnetic curvature and shear. With 
these simplifying assumptions, we are able to present a 
completely self-consistent, yet tractable calculation of 
anomalous transport in a strong-turbulence regime. 

Our work is presented in two papers. In this paper we 
consider the transport due to electrostatic drift-wave tur­
bulence. In a companion paper,62 we use the method de­
veloped here to calculate the transport due to drift-Alfven 
wave turbulence, i.e., including the effects of magnetic fluc­
tuations. 

This paper is organized as follows. In Sec. II, we give 
the basic assumptions and the model equations describing 
the dynamics of the plasma. We present a method based on 
the DIA to calculate the transport matrix coefficients. The 
results are given in a very general form, in terms of the 
potential fluctuation spectrum. In Sec. III, we give a brief 
review of fluctuations and transport experiments. As an 
example of application of our method, we give numerical 
estimates of the transport coefficients corresponding to the 
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parameters of the TEXT tokamak. Finally, in Sec. IV, we 
give a summary of the principal results. 

II. ANOMALOUS TRANSPORT FROM DRIFT-WAVE 
TURBULENCE 

In this section, we develop a method to determine the 
transport coefficients associated with drift-wave turbulence 
in a tokamak plasma. In Sec. II A, we introduce the fun­
damental kinetic equations, which serve as a basis for the 
theory, and we specify the geometry of the problem. In Sec. 
II B, we exploit the separation of time scales and length 
scales in the problem to derive two separate systems of 
equations: one describing the transport, the other describ­
ing the turbulent fluctuations. Finally, in Sec. II C, we 
derive a statistical solution for these equations using the 
direct interaction approximation (DIA), and we give ex­
plicit expressions for the anomalous fluxes of particles and 
heat. 

A. Basic equations 

1. Electron dynamiCS 

When considering plasma phenomena of low fre­
quency compared to the electron gyrofrequency, such as 
drift waves, the electron dynamics can be described by the 
drift-kinetic equation (hereafter DKE). This equation de­
scribes the motion of the guiding center of the particles, 
and is obtained by averaging the Vlasov equation over the 
rapidly oscillating component of the motion (see, e.g., 
Kulsrud63 and Landau and Pitaevskii64

). It is given by 

al a 
-a +Vo[(vE+vD)/]+Vo(vllb/)+-a 

t ~ 

x[( -~eEIl -~eboVB)f]=C(f), (1) 

where l(x,vlI ,/L,t) is'the electron distribution function, 
/L=mevI/2B is the electron magnetic moment, C(f) is 
the collision operator, and parallel II and perpendicular 1 
subscripts refer to· the direction of the magnetic field. In 
this equation, the EXB drift velocity is given by 
VE= (el B)EXb, while the magnetic drift velocity 
vD=(lI Bfie)(v~ /2)bXV B+(lIfie )vrr (RBXb), where 
b is a unit vector parallel to the magnetic field, fie is the 
electron gyrofrequency, and RB is vector curvature radius 
of the magnetic field lines. 

In this section, we will consider the electrostatic limit 
(E= - V<,b, where <,b is the electrostatic potential) of the 
DKE, which is valid when the plasma parameter 
(3«m/mi) (see, e.g., Miyamot065

). We consider the more 
general electromagnetic case [E = - V <,b - ( lie) aAJ at] in 
Paper II. We distinguish between the two different popu­
lations of electron in a tokamak: circulating and trapped 
(see, e.g., Miyamot065

). In this work, for simplicity, we 
ignore the magnetic shear66 and curvature in the tokamak, 
i.e., we consider a uniform magnetic field Bo. As a conse­
quence, v D=O and V B=O. The presence of trapped parti­
cles is therefore the only VB effect that we consider. 

The circulating electrons have 1 vII IVI 1 > (2£) 112, 

where £=rIR is the inverse aspect ratio of the tokamak (r 
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and R are the minor and major radii of the tokamak). The 
orbits of circulating electrons have no turning points; 
hence they "circulate" around the torus. The distribution 
function r(x,vII ,vr ,t) of circulating electrons obeys the 
following DKE; 

ar 
Tt+VEo V r+vlI 

The collision operator Cc will be specified below [Eq. 
(25)]. 

The trapped electrons, instead,. have 1 VII IVI 1 

< (2£) 112, implying the presence of turning points in their 
orbits ("banana orbits;" see, e.g., Miyamot06S ). For these 
electrons, the DKE can be further simplified by "bounce 
averaging," i.e., averaging over the rapid oscillatory mo­
tion of the guiding center in the toroidal direction. The 
bounce-averaged DKE is valid for frequencies smaller than 
the bounce frequency, i.e., for W<wbe= [ev/(Rq), where 
ve == ~T oIme is the electron thermal velocity, To is the elec­
tron temperature, me is the electron mass, and q is the 
tokamak safety factor (see, e.g., Gross67). The bounce­
av~raging procedure eliminates all the terms that are odd 
in VII from the DKE. The distribution function 
.f(XI ,vI ,t) for the trapped electrons therefore satisfies 

a.f t t 
ai+VEoV I =Ct(r.t). (3) 

2. Ion· dynamics 

Our work will focus on the electron nonlinearities. For 
simplicity, the ion dynamics will be treated in the fluid 
limit. In this limit, the ion density ni can be written quite 
generally as68,69 

(4) 

where no is the eqUilibrium ion density (we take Z=l), 
and Xi( 1 <,b 12) is the nonlinear ion susceptibility, which de­
pends on the frequency and the power spectrum of the 
potential fluctuations. The results of this section are given 
in terms of an unspecified Xi' In Sec. III we will introduce 
a specific form for Xi' which will allow us to obtain nu­
merical results. 

3. Self-consistency constraint 

It is important to maintain the self-consistency of the 
model, since the electromagnetic fields and particle densi­
ties are strongly coupled through Maxwell's equations. 
Theories that are not self-consistent, such as those based on 
the quasilinear approximation, usually violate the impor­
tant property of ambipolarity of the particle fluxes.4o 

Here the system of equations (2)-(4) describing the 
particle and field dynamics is closed by the addition of the 
quasineutrality relation, valid for scales larger than AD (the 
Debye length), 

(5) 
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where ne(x,t) = I fe dv= I ere + f)dv is the total electron 
density. 

4. Geometry 

Since we assume that Bo is uniform and that the tur­
bulent length scale is smaller than the macroscopic scales 
on which density and temperature vary (cf. Sec. II B), the 
problem can be studied locally. We can therefore use a 
local Cartesian geometry, in which x;;;'O represents the ra­
dial coordinate, y represents the poloidal coordinate, and z 
is the coordinate along the field line. The origin is at the 
center of the minor radial section of the tokamak. The 
magnetic surfaces are therefore planes with x=const. Note 
that the plasma density and temperature are constant on 
magnetic surfaces (see, e.g., Gross67 ). 

B. Separation of scales 

1. Motivation 

For our study of anomalous transport, the basic set of 
equations [(2)-(5)] can be rewritten as two separate sys­
tems of equations: one describing the turbulence, the other 
describing the transport. This separation can be done be­
cause turbulence and transport correspond to widely dif­
ferent time scales and length scales. The two systems of 
equations remain coupled through their nonlinear terms. 

For drift-wave turbulence the typical frequencies and 
wave numbers are cu-cu*, kl -p;l, and kll _(qR)-I, 
where cu*=-(cToIeB)koboX(Vnolno) is the electron 
diamagnetic frequency, Ps is the ion gyroradius at the elec­
tron temperature, and qR is the connection length (I.e., the 
length of the helical trajectory of a circulating particle; see, 
e.g., Gross67

). In contrast, the transport occurs at the very 
low frequency cuo, and very small wave number ko of the 
external perturbations. For example, the typical frequency 
for modulated gas puff experiments in the Texas Experi­
mental Tokamak (TEXT) is cuo:S240 rad/s<cu*-106 
radls (cf. Table I). The poloidal and parallel wave num­
bers for the transport both vanish because the fluxes are 
averaged over the magnetic surfaces (perpendicular to the 
x axis). The radial wave number kox-L;;I<p;l, where 
Ln== I nofVno I is the (macroscopic) density gradient 
length scale. For example, in TEXT, kox=O.04 cm- I and 
p;I=8 cm- I (cf. Table I). 

2. Transportequafions 

In the following calculations, we will use an overcaret 
for quantities that vary on the transport scales, and an 
overtiide for turbulent quantities. Subscripts 0 will be used 
for the equilibrium values of the parameters. 

In this work, we develop a method to calculate the 
anomalous fluxes resulting from small external perturba­
tions. We study the modulation due to these perturbations 
on the transport scales. Therefore, we add external, infin­
itesimal, velocity-dependent source terms gc, g.', and g.i to 
Eqs. (2), (3), and (4) respectively. As described in Sec. 
n B, these sources have frequencies cuo<cu* and wave num­
bers kox < p; I. The electron distribution functions r· t are 
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then the sum of an equilibrium part fo, a fluctuating part 
]c,t, and the response to the modulation r,t: 

(6) 

where the equilibrium distribution function fo is a local 
Maxwellian, 

no(x) (To(X»)-3/2 (-meD2
) 

fo{x,v
2

) (21T)3/2 ----m;- exp 2T
o
(x) , (7) 

no and To being the local electron density and temperature. 
We assume70 tPo=O. 

The egua!ions describing the (infinitesimal) response 
functions f t

, r, Iii. and tP to the external perturbations are 
obtained by taking the low-frequency and long-wavelength 
limit of Eqs. (2)-(5), and averaging over the magnetic 
flux surfaces (Le .• kll 0=0). This gives 

(8) 

(9) 

(10) 

(11 ) 

where the angular brackets denotes an ensemble average 
over the turbulence. Equations (8) and (9) can also be 
written in terms of the incremental anomalous fluxes 
rc,t == (v;r·t) as 71 

aJctt A A A 

Tt+ V· rc,t= (Ce,t> +SC,t. (12) 

These phase-space fluxes fe·t are velocity dependent. How­
ever, since the collision frequency Vei>wO, the distributions 
jc and jt are nearly Maxwellian on transport scales. 
Therefore we can use the corresponding moment equations 
to calculate the fluxes of particles and energy. These are 
obtained by integrating (12) over velocity. We obtain 

(13) 

where the particle flux density 

(14) 

and 

(15) 

3 ~ h 

where u= ('i)nT is the energy density and Q== To 

I (fe+rt )(v2/2v;)dv is the total energy flux density. Us­
ing the continuity equation (13), the energy equation 
( 15) can be rewritten as an evolution equation for the 
temperature, 
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where the net energy flux q is obtained by substracting the 
energy convected by the particles from the total energy 
flux Q, 

2 3 2 
A 3 A J A A V - Ve 

q=Q-2 Torn = To (re+rt
) 2v; dv. (17) 

Note that we have omitted the terms representing the clas­
sical and neoclassical fluxes (Le., those corresponding to 
the collision terms (Get» in Eqs. (15) and (16). 

To evaluate r nand q, we consider perturbations of the 
equilibrium density and temperature profiles. The Max­
wellian distribution depends on the temperature and den­
sity as 100:. no Tr;3/2 exp( -mif/2To)' Therefore, if we 
perturb the density profile, 10 is perturbed according to 

alo no 
no~=/o-, 

ano no 

and the corresponding sources are 

'" "'t • no SC=s = -lwofo -, 
no 

" I J" 51=-.- se dv=no· 
-lwO 

(18) 

If we perturb the temperature profile, 10 is perturbed ac­
cording to 

2 2. A 

A alo v -3V;; To 
To aT =/0 2V2 T' o e 0 

and the sources are 

(19) 
A 1 J~ A 51=-.- se dv=O. 

-lwO 

Note that in both cases we insist on injecting the same 
number of ions and electrons in order to preserve the 
quasineutrality of the plasma. 

3, Turbulence 

The anomalous fluxes re
•t depend on the turbulent 

spectrum of fluctuations. These fluctuations are described 
by the following set of nonlinear equations: 

a- - -at Jf+VE' V lo-Ct= -VEo V It, 

nl e¢ 
-=-Xj, 
no To 
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(21 ) 

(22) 

(23) 

obtained from Eqs. (2)-(5) by using the expansion 
(6). We have neglected the nonlinear term 
- (e/me) VII ~ al/avil ,sincethis term does not contribute 
directly to the spatial fluxes. 

Vie now specify the form of the collision operators Ce 

and Ct. On the time scale of drift-wave turbulence, the 
circulating electrons are collisionless, since w*>vej. The 
trapped electrons, however, have an effective collision fre­
quency Veff-w* < Wb' This "detrapping" frequency is ve­
locity dependent, and is given b}' Velf=V*(V/v)3, where 
v*=ve/€. Some authors have used very simple collision 
operators, given by ~ 

Ct= -vefflt, 
(24) 

However, these collision operators do not conserve the 
number of particles, since electrons detrapped by a colli­
sion do not reappear as circulating electrons. Therefore, 
the use of Eqs.·(24) could introduce errors in the calcula­
tion of the transport. A better choice would be to adopt an 
energy-dependent linearized BGK operator (Bhatnagar, 
Gross, and Krook72) of the type 

(25) 
Cc=_(/o) r Ctdv, 

nOe J t 
where, ne=~+~ is the total fluctuating electron density, 
and nOe= f clo dv is the equilibrium number density of cir­
culating electrons. This collision operator not only con­
serves the total number of particles, but also vanishes when 
I is a perturbed Maxwellian. Unfortunately, it couples the 
two electron equations [(20) and (21)] through their non­
linear terms. Although we could, in principle, solve the 
problem with this collision operator, it complicates the al­
gebra substantially. For the sake of simplicity and clarity, 
we will replace ne and_Te in Eq. (25) by their linear ap­
proximations nf and Tf, given by 

(26) 

and 
-L 2 2. -
Te _~ J -L V -

3ve =: e<fJ L 

T -3 I 2 2 dV-3 T Xr,· 
o no v" 0 

(27) 

where I L = (ft+ ft) L is determined from the linearized 
form of Eqs. (20)-(23). Explicit expressions for xf (the 
electron susceptibility) and Xf are derived in Appendix B. 

c. Statistical solution of the model equations 

1. The direct interaction approximation 

In well-developed turbulence, perturbed quantities can 
be treated as statistical variables. The equations for the 
moments of these statistical variables form an infinite set of 
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differential equations. The direct interaction approxima­
tion (hereafter DIA) method provides an approximate 
way of closing this infinite set of coupled equations into a 
definite set, containing only moments below some finite 
order. It presents many advantages over alternative theo­
ries of turbulence. In particular, it conserves energy and 
the positivity of the energy spectrum, two important fea­
tures that are not present in simpler theories such as those 
based on quasinormal approximations.46 

In principle, the DIA method allows the determination 
of both the response functions and the turbulent spectrum 
at saturation. Here, however, we will use the method to 
determine the response functions in terms of the saturation 
spectrum, which we assume to be known experimentally 
(see Sec. III). 

The DIA method is based on the evaluation of average 
infinitesimal response functions that naturally provide the 
incremental fluxes reSUlting from small perturbations of 
the eqUilibrium profiles, rather than total fluxes accross the 
magnetic surfaces. 52 This is particularly well suited to com­
parisons with the recent perturbative transport 
experiments. 15,61 Indeed, although anomalous transport 
has been studied traditionally in terms of total equilibrium 
fluxes, many experiments now study the transport of small 
perturbations, such as heat pulses. It has been observed 
experimentaIly58 and can be shown analytically (see Ap­
pendix D) that the incremental fluxes resulting from small 
perturbations are quite different from the equilibrium 
fluxes. 

For detailed descriptions of the DIA method and dis­
cussions about the validity of this procedure, the reader is 
referred to the review articles by Kadomtsev,42 LesIie,47 
Krommes,48 and SimHon and Sudan.49 

2_ Anomalous fluxes 

Let us denote the first-order flu£tuatin.z quantities in 
the small parameter expansion by r( I), f( I), m I), and 
~(l). These "forced beat" fluctuations have frequencies 
w'=wo-w and wavelengths k'=ko-k. We rewrite the 
transport equations (8 )-( 11) as 

a: + (v}}), VF+VE' VF(l) > = «(\) +t", (28) 

a~t + (v1-1) -Vjt+VE-Vjt(l»= (Ct>+gt, (29) 

(30) 

(31) 

From Eqs. (28) and (29), we see that the anomalous 
fluxes te,t are 

terfIA = (v}}) F,t +v;r,t( 1) >. (32) 

On the other hand, the DIA equations for the forced beat 
fluctuations, obtained from the system of Eqs. (20)-(23), 
can be written as 
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(a )fc(l) -(I) VI' c-(l) 
at+ lJlI VII J +VE' JO- c 

=-(VE·Vr+VE"VF), (33) 

a - -(I) A -

at I t
(1) +v}})' V fO-Ct = - (VE' V ft+vEo V f), (34) 

ii1l}=no(e~(1)/To)Xi' (35) 

mI)=~l)= J (FO)+ jtO»dv. (36) 

Note that in Eq. (35) we have neglected the effects of the 
beat potential on the nonlinear ion susceptibility Xi' This 
simplification is one of the main limitations of our treat­
ment. 

The set of Eqs. (33)-(36) is linear in the beat fluctu­
ations. It can be solved explicitly for F(l), jt(l), ml), and 
~(1) (which vary o~ th~ turbl}lent scale) in te~s of the 
response functions r, It, ni' f/J, and the fluctuatmg quan­
tities F, ft, nit and ~. These results are then used

A 
to cal­

culate the velocity-dependent anomalous fluxes Iti~A in 
terms of the fluctuation spectrum. Here we only provide a 
sketch of the derivation. The reader is referred to Appen­
dix C for more details. 

The calculations are performed in Fourier space. The 
Fourier transforms (in space and time) orEqs. (33)-(36) 
are 

( c )-lh-c(l) bC f, ( :l:O)IT ) 
gk' k' + k' 0 e'Yk' 0 

""-,.. "'-c* 
= - Wk,ko(eITo) (f/Jrhko-f/Jkohk ), 

(g~,) -lh~,l) +b~,fo(e~i~) ITo) 

-.. A ,.-t* 
= - Wk,ko(eITo) (f/Jrh~ -f/Jkohk ), 

:::-{ I ) ( :1:(1 )I'T' ) nik, =no e'l'k' L 0 Xi' 

-(1) 
:::-{l) :::-{I) (ef/Jk') J h-c(l) h-t(l»d nik, =nek, =no r; + (k' + k' v. 

(37) 

(38) 

(39) 

(40) 

Here ko= (ko,wo), k= (k,w), and k'= (k',w') =ko-k are 
the wave vectors of the external perturbations, the fluctu­
ations, and the beat fluctuations, respectively. The electron 
distribution functions have been e,!panded .into th~r adia­
batic and nonadiabatic parts as r,t=foet/>ITo + hc,t. The 
nonlinear coupling coefficient is given by 

(41 ) 

The propagators g1 and gi. for the circulating and trapped 
electrons are defined by 

(42) 

and 

g,,= [ -iw+Vefrl- l. (43) 

Finally, the coefficients b" and h" are 
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b'k= -i(w-w*) +ak 

and 

2 3 2 

(44) 

t. (L 2 L V - Ve) 
bk= -z(w-w*) +veff l-Xe -3 XT 2V; , (45) 

where ak(v), given by Eq. (BIQ) of Appendi,! B, is a col­
lision frequency defined by Ck== -a,J"o(ecp,jTo) , and 
w*= - (cT o/eBo)k' boX (Vno/no) is the diamagnetic fre­
quency. 

Solving the linear system of Eqs. (37)-(40) for 
-c(1) h-t(1) ~l) :;:-el) find 
hk, , k' ,nik' and 'f'k' , we 

-(1) 
eCPk -I e f - c AC ,..t At 
nOT=~ Wk,ko T [CPk(gkhko + 5khko) 

o Xi-Xe 0 

(46) 

and 

-(1) 

h- c,t(1) gC,tbc,t.r n eCPk W .!!... (A:. £c,t ;. hc,t) 
k =- k kJO 0 To - k'koTo 'f'k"ko-'f'ko k . 

(47) 

The coefficients X~ and Xi have been defined in Eqs. (26) 
and (4). The quantity X i-X~ is proportional to the plasma 
dielectric function if (w,k) = (wp.lkve)2(Xi-X~)' Equa­
tions (46) and (47) give the beat quantities in terms of the 
response functions ¢ ko and fz~, and the fluctuations. The 

DIA fluxes tb~ are then obtained in terms of the external 
perturbations as 

te,t _ (v(1)he,t+v i:'c,t(l» 
DIA - E E" 

=-i(:~) t kXboWk,ko -!wo [g~t~'t( le!:() 

-~ ( f (gW+g~t)dV) 
X, Xe . 

x (:0 (;oJ;$t')+~tb~t~: (l e!:12
) )], (48) 

where the response functions have been replaced by their 
lowest-order approximations (obtained by neglecting the 
nonlinearities) , 

A t gc,t " 
hC' =-.- and CPko=O. (49) 

ko -IWO 

Note that in Eqs. (46)-(48), we have used the separation 
of scale I ko I « I k I, so that k' = ko - k =. - k. 

Note that the expression (48) for the perturbed anom­
alous fluxes fI;~ is independent of the details of the elec­
tron and ion equations, requiring only that they can be 
written in the form (37)-(39). 

The test-particle result is recovered by letting ¢pl_O 
in Eqs. (37)-(40) (This is equivalent to assuming that the 
electromagnetic fields are not directly affected by the per­
turbations.) This gives 

h- c,t(1 l _ W (IT) (A:. £e,t _;. he,t) k' - - k,ko e 0 'f'k"ko 'f'ko k , 
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(50) 

and the test-particle fluxes are 

A cTo ~ I A (le¢kI2) rt~=-i-B ""kXboWk,ko-·-gClsc,t -T . 
e 0 k -zWo 0 

(51) 

We note that, as expected, expression (51) is independent 
of Xi' i.e., tt~ is independent of the ion dynamics. Indeed, 
since we have neglected classical collisions, electrons and 
ions can interact only through the electromagnetic fields. 
However, the test-particle approximation assumes that the 
fields are not affected by density perturbations, and there­
fore the electron incremental flux must be independent of 
the ion dynamics. 

As an example of the test-particle limit, we can calcu­
late the flux of circulating electrons for a purely resonant 
propagator, i.e., gk=mS(w-kn vn ). Then 

I'n,TP= f I'TP dv 

cTo r; 
=no eBo t (kXbo) VI 

- (cTo/eBo)k· (boXiko) (no/no) (l eTJ;

o

kI
2
). 

X Ikll IVe 
(52) 

This result has the same form as the quasilinear result for 
the equilibrium flux, given by18 

cTo 2: 1T" w*-w e'f'k ~ 
A:2 

rn=noeBo k ky Ilknlve (I Tal ). (53) 

The test-particle result (52) can be obtained from the qua­
silinear expression (53) by taking the perturbation of this 
expression, ignoring the perturbation of the spectrum and 
the normal frequency w. 

We now proceed with our DIA calculation. Using Eq. 
(51), the DIA fluxes can be rewritten as 

A A cT ~ 1 1 
rtiiA=rt~+i-B ""kXboWk,k-.-~ 

e 0 k "'0 -l(j)O Xi-Xe 

x (f (gW+g~t)dV) (:0 (;0 J;$~t*) 
+~tb~t~: (r!:() ), (54) 

The additional term present in the DIA result is due to the 
quasineutrality constraint. This term is proportional to 
l/(Xi-X~)' i.e., to the inverse of the plasma dielectric 
function If «(j),k). Note, also, that the fluxes of trapped 
particles and circulating particles are coupled through 
If (w,k) in the DIA result. 

We can now obtain the fluxes of particles and heat 
using Eqs. (14) and (17) for perturbations in the density 
and temperature profiles given by (18) and (19). If the 
wavelength of the perturbation is smaller than the density 
gradient length scale, i.e., if koxLn> 1, the results can be 
written in the form 
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(55) 

and 

(56) 

where the four diffusion coefficients Dnn , DnT , DTn , and 
DTT are given by 

Dnn=- - 2: IkXbol 2 1 I i -1 (CTO)2 (X"'-X
L) 

no eBo k Xi-Xe 

X (le!:I) J (g%+g~)/o dv, (57) 

DnT=~ ( CTO)2 2: IkXboI2(1-xt-xt) 
no eBo k Xi-Xe 

(58) 

J-3V; 1 (Xf-1 L* L) 
X 2V2 dV-X'_XL ~l XT -XT 

e I e Xe -

(59) 

-1 (
CTo)2", 2[ J DTT = no eBo t IkXbol (gk+~)fo 

(J-3V;)2 1 (xt- l L* L) 
X 2V; dv-Xi-X~ X;-* -1 XT -XT 

(60) 

Equations (55) and (56) can be combined using the anom­
alous transport matrix, 

( rn) (Dnn DnT) ( Vno) (61) 
(l/To)q = - DTn DTT (nolTo)VTo' 

The four diffusion coefficients (57)-(60) will be eval­
uated in Sec. III for specific density and temperature pro­
files. We have chosen to write the transport matrix (61) in 
such a way that the flux of particles r n and the net heat 
flux q are given in terms of the density source no and the 
temperature source To. The transport matrix is then sym­
metric in the test-particle limit, i.e., D~~ = D¥,:. It is im­
portant to realize that, although it is very simple in analytic 
calculations to consider pure density sources or pure tem­
perature sources, this is not possible experimentally. In­
deed, density and temperature are not eigenvalues of the 
coupled density and temperature evolution equations (13) 
and (16). Therefore, they will, in general, be perturbed 
simultaneously (cf. Sec. III B). 

The integrals over velocity space in Egs. (57)-(60) 
can be evaluated explicitly since 10 is a Maxwellian distri-
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bution, and the propagators g% and g~ are known. In terms 
of the "circulating integrals" Hn and the "trapped inte­
grals" An defined in Appendix A, the diffusion coefficients 
can be written as 

( 
e¢ 2) 1 

X I T:t -iw [(1-7)Ho+7Ao], (62) 

( 
e¢ 2) 1 

X IT:I _iW[(1-7)H1+ 7A tl, (63) 

(
CTo)2", 2 1 [ DTn=- -B £., IkXbol -. [(1-7)H1 e 0 k -IW 

1 (xt- 1 L* L) +7Atl-~ ~XT -XT 
Xi-Xe Xe -I 

X [( 1-7)Ho+7Ao] ] (Ie!:(), (64) 

(
CTO)2", 2 1 [ DTT = - -B £., IkXbol -. [(l-r)H2+7A2] 
e 0 k -lW 

(65) 

where r, calculated in Appendix A, is the fraction of 
trapped electrons. 

The test-particle results are recovered by dropping the 
terms involving a lI(xi-xf) in expressions (62)-(65). 
This is equivalent to letting the dielectric go to infinity, i.e., 
ignoring the electromagnetic field response. 

Note that the expressions for the transport matrix co­
efficients are rather complicated, and cannot be expressed 
as simple scaling laws. Furthermore, there is no simple 
relation between the various transport coefficients. It has 
been recently argued that simple scaling laws cannot ex­
plain the experimentally observed features of the perturba­
tive fluxes.61 

3. Spectrum modulation 

When the equilibrium density and temperature profiles 
are modified by external perturbations, the saturation spec­
trum is also perturbed as a result. In recent experiments in 
TEXT, the spectrum modulation resulting from the mod­
ulation of the gas feed has been measured. It is not possible 
to calculate the spectrum modulation in the quasilinear or 
test-particle approximations. Indeed, these methods ne­
glect the effects of the beat potential, which is responsible 
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for the spectrum modulation. However, as we show in this 
section, it is straightforward to obtain this information us­
ing the DIA method. 

The spectrum at a wave number k is given byh 
= «eITo)2¢,jV. The modulation of the spectral compo­
nent h at a frequency and wave number ko= (ko,cuo) is . 
denoted by ik,ko and can be obtained using the DIA 
method. We obtain 
A--(I) 2-(1)-hko = «eITo)2<plfPko_k) + «eITo) <Pk <pko-k) 

=2 Re«eITo)2¢r¢11», (66) 

where we have used the separation of scales 
k' =ko-k=. -k. In the test-particle limit, ~J/) ..... O and 
ik,ko = O. Using the result (46) for ~F), we can rewrite 
(66) as 

-~ko(glizk+l';;~) l¢VdV]. (67) 

Now, using Eqs. (18) and (19) for the perturbations of 
density and temperature, and Eq. (49) for the lowest-order 
response functions, we obtain the relation between the rel­
ative spectral modulation and the relative density and tem­
perature modulations as 

(68) 

with the coefficients 

( 
2 eTo 1 ) 

In=Re ~-B ke-.- [(l-T)Ho+ TAol 
Xt-Xe e 0 -ICU 

(69) 

and 

IT=Re(~ eTBo ke -
1
.- [(1-T)H1+TAd). 

Xt-Xe e 0 -ICU 

(70) 

In these equations, we have used the velocity integrals H n 

and An defined by Eqs. (A3) and (AI) in Appendix A. 
Numerical estimates of these coefficients are given in Sec. 
III, and can be compared with those from modulation ex­
periments. 

III. THE ANOMALOUS TRANSPORT MATRIX 

A. Summary of recent experiments 

1. Measurements of the transport coefficients 

Thermal and particle transport coefficients have been 
determined traditionally from the study of the steady-state 
power and particle balance. Recently, however, a new type 
of method has been developed, which involves perturba­
tions of the steady-state profiles and the analysis of the 
subsequent relaxation processes. These perturbations can 
be imposed externally or can result from naturally occur­
ring phenomena such as the sawtooth collapse. 
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The first direct measurements of transport coefficients 
from the propagation of heat pulses produced by the saw­
tooth collapse appeared in the late 1970s.73,74 Since then, 
the method has been used in many experiments at the 
TFTR (Tokamak Fusion Test Reactor),54,56 JET (Joint 
European Torus),57 and TEXT (Texas Experimental 
Tokamak) 58 tokamaks (see Wesson's Tokamaks75 for gen­
eral information about these machines). Most recently, ex­
periments have been performed where the injection of gas 
in the tokamak (gas feed) is modulated in time.61 In these 
gas feed modulation experiments, it has been possible to 
measure the modulation of the density and temperature 
profiles as well as that of the turbulent spectrum. 

Discrepancies have been reported between the trans­
port coefficients measured from steady-state power balance 
analysis and those deduced from the analysis of pulse prop­
agation. However, it is now understood that this discrep­
ancy is perfectly natural, since the two methods actually 
measure different physical properties of the plasma.76 In­
deed, the diffusion coefficients associated with the evolu­
tion of perturbations of the profiles are obtained by linear­
izing the transport equations about an equilibrium state. 
We have shown in Sec. II that these coefficients are differ­
ent from those determining the steady-state transport. 

It is difficult to separate experimentally the effects due 
to density perturbations from those due to temperature 
perturbations. This is because changes in the density profile 
induce changes in the temperature profile, and vice versa. 
It was shown both experimentally77 and theoretically78 
that the density and temperature are not eigenvectors of 
the transport problem. They are coupled through the off­
diagonal terms of the transport matrix. As a result, the 
measured fluxes always involve several transport coeffi­
cients. Recently, a framework for the interpretation of cou­
pled heat and particle transport has been developed,76 and 
the experimental results expressed in terms of a transport 
matrix with nonzero off-diagonal terms.59,76 In practice, 
modulated transport experiments allow the extraction of 
both diagonal and off-diagonal transport coefficients. 

2. Measurements of the fluctuations spectrum 

Another class of experiments has focused on the source 
of the anomalous transport, i.e., the plasma microturbu­
lence. 

In the late 1970s, a low-frequency, long-wavelength 
broadband turbulence spectrum propagating in the direc­
tion of the electron diamagnetic velocity was detected in 
TEXT using multichord FIR (far infrared radiation) 
interferometry.31,79 Unfortunately, FIR scattering has a 
poor spatial resolution for small values of the wave number 
(k1 <4 cm- I ).80 This is a problem because the fluctuations 
spectrum is large in that range of wave numbers. The other 
method available to measure the spectrum in the confine­
ment region, namely heavy ion beam probe (HIBp81) has 
a good spatial resolution, but is insensitive to large values 
of the wave number (kl >4 cm- I

). In particular, the two 
experimental methods give quite different measurements 
for the average poloidal wave numbers in TEXT 
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(kePs=0.3 from FIR results and kePs=O.l from HIBP 
results)P 

Because of the complexity of the measurements and 
their interpretation, direct comparisons between theoreti­
cal and experimental results remain very difficult. 

B. Numerical results 

1. Choice of parameters 

The theoretical expressions for the transport coeffi­
cients were obtained in Sec. II, with few assumptions be­
sides the chosen plasma model and the DIA theory. How­
ever, in order to obtain numerical results that can be 
directly compared with experiments, we need to adopt a 
specific set of tokamak parameters, as well as an explicit 
form for the nonlinear ion susceptibility Xi' 

a. The TEXT tokamak. A fairly complete set of data 
for the fluctuation spectrum in the interior of a tokamak 
was obtained in the Texas Experimental Tokamak 
(TEXT).31 We will therefore adopt the TEXT parameters 
for our numerical estimates. The major radius R = 1 m, the 
minor radius a=25 cm, and the ratio qR/a-lO. For the 
electron temperature and magnetic field, we take To= 1 
keVand Bo=26 kG, which represent typical experimental 
values. 31 In Table I we list the values of the principle pa­
rameters in TEXT. 

We adopt a parabolic radial profile for the equilibrium 
density, no(r) =nc( 1-?-/a2

). For the equilibrium temper­
ature profile we take To(r)=TcCl-?-/a2)2, so that 
7f = d In Told In no = 2 is independent of radius. The coef-

TABLE I. TEXT tokamak parameters (cgs units). 

Parameter 

Major radius 
Minor radius 
Safety factor 
Central electron temperature 
Central electron density 
Toroidal magnetic field 
Plasma fJ parameter 

Velocities 

0.02 

o 

-0.02 

o 

r/a=0.5 

0.2 0.4 0.6 0.8 
k,.o. 

1 

FIG. 1. Normal mode frequency !UJ. and growth rate Yk' normalized to 
\111 klJ 1 v.' as a function of the normalized poloidal wave number keP" in 
the midplane rla=0.5. 

ficients nc and Tc are the equilibrium values of the density 
and temperature at the center of the plasma, i.e., at r=O. 

b. The ion susceptibility. The ions will be modeled by 
cold fluid equations with an eddy viscosity Vi' This viscos­
ity provides the necessary sink of free energy and over­
damps the unstable electron waves. The ion continuity and 
momentum equations are 

art 
_1+V·(nov.)=O at I 

Symbol 

R 
a 
q 
To 
no 
B 

fJ=4rrnoToi Jil 

Ve= ( T aim.) 1/2 

Cs= ~ToImi 

Typical value 

1m 
25 cm 

qRla';::!lO 
1 keY 

4X lOll cm- J 

26 kG 
0.001 

(71) 

Electron thermal velocity 
Ion sound velocity 
Alfven velocity 
Electron diamagnetic velocity 

IIA = DI( 4rrnOmi) 112 

11.=108 TolVlnnollB 

1.325 X 109 cm/s 
3.IOX 10' cm/s 

9X lOS cm/s 
1.5X lOS cm/s 

588 

Frequencies 

Electron-ion collision frequency 
Electron diamagnetic frequency 
Ion cyclotron frequency 
Electron bounce frequency 
Electron plasma frequency 

Lengths 

Ion gyroradius 
Debye length 
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_6n• 1nA 
vei=2.9X10 ~ 

(t).=keV. 0 

ftj=eBlmC 
(t)b=velqR 

(t)pe= (4rrnoe2lme) 1/2 

6X 104 rad/s 
106 rad/s 

2.49X 108 radls 
5.30X 108 rad/s 
3.57X 1011 rad/s 

0.124 cm 
3.7X 1O-~ cm 
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1.2 
0.05 

1 

0.04 
~ 0.8 co 

'i' 0 
0 :::::: 0.03 
:::::: 0.6 ,.\II ......., 
,.\II iii ---" o 0.02 
0" 0.4 

0.2 0.01 

0 0 
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 

(a) k,p. (b) k,p. 

FIG. 2. (a) Diffusion coefficient D •• (ke), normalized to the mixing-length estimate ~L(ke), as a function of the normalized poloidal wave number 
keP" for several values of the radius ria. (b) Diffusion coefficient D •• (ke), normalized to Do, as a function of the normalized poloidal wave number 
keP., for several values of the radius ria. 

and 

avi=~ (-VZ+~VXBo) +v. v2v. at mi 'f' c I I I' 
(72) 

where Vi is the ion velocity and mi is the ion mass. By 
taking the Fourier transforms of these equations in space 
and time and solving them perturbatively in the limit 
lD.(fij , we find 

n{ eifJ 
no =TOXi' 

with 

(73) 

where ri=kfvj is an effective eddy viscosity damping, 
which depends on the turbulent spectrum. Note that this 
very simple form of the ion susceptibility does not neces­
sarily reflect any direct contribution of the ions themselves 
to the anomalous transport. Furthermore, we assume that 
the ions are cold, i.e., Ti'<Te , which is usually not true, 
especially in the larger tokamaks. 

It is known from experiments3I that the frequency 
spread AlDk of the fluctuations spectrum remains compara­
ble to the normal mode frequency lDk over the entire range 
of relevant wave numbers, i.e., for 0.1 <k 1 Ps<.I.0. Since we 
assume that the ion nonlinearities are the only cause of 
spectrum broadening, the requirement that AlDk-lDk im­
plies a scaling 

r i =lD*/(2kI p;). (74) 

Since lD* <r. k 1 , we haves3 r (<r. kit. 
The normal mode frequency and growth rate are found 

by solving the dispersion relation, 

g> (lD,k) <r. [Xj(lD,k) -X;(lD,k)] =0, 

where lD=lDk+iYk, xf is given by Eq. (B19) of Appendix 
Band X{ is given by Eq. (73). The results for lDk and Yk are 
plotted in Fig. 1 as a function of ke, in the tokamak mid-
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plane r=0.5a. Note that the damping rate Yk is about half 
the mode frequency lDk' in accordance with our choice for 
r i , Eq. (74). 

c. The fluctuation spectrum. We assume that the fre­
quency dependence of the experimental potential fluctua­
tion spectrum can be represented by a simple Lorentzian 
profile centered on the eigenfrequency, so that 

(75) 

where I k , the frequency integrated spectrum, is defined by 

(76) 

Note that Yk gives the half-width at half-maximum. 
The spectrum Ik has been measured in TEXT.3I We 

model the data by 

(

0, if ke< 1.41 cm- I ; 

I k =0.41 X 1, if 1.41 cm- I <ke<2.83 cm- I; 
(kel2.83)-4, if ke>2.83 cm- t • 

(77) 

Note that we introduce a cutoff at the small wave numbers, 
and the constant 0.41 is chosen such that 
!Ik dkI(21T) 3 = 1. We have assumed isotropy in (ky,ke), 
i.e., in the direction perpendicular to the magnetic field, as 
was also assumed in the interpretation of the experimental 
data.31 

Finally, we use the "mixing-length" estimate of the 
potential fluctuation spectrum to model its radial depen­
dence, 

(78) 

2. The diffusion coefficients 

In Sec. II, we have derived general expressions for the 
diffusion coefficients, given by Eqs. (62)-(65). We now 
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FIG. 3. (al Spatial variation of the diffusion coefficients Dnn , Dnr , Drn • and Drr I nonnaIized to the mixing-length estimate JYliL. (b l Spatial variation 
of the diffusion coefficients Dnn , Dnr , Drn I and Drr , obtained assuming JYliL <X (rla)[l- (rla)2]2. 

use the parameters described in the previous section to 
evaluate numerically the diffusion coefficients. 

a. Wave number dependence of the diffusion coeffi­
cients. In Eqs. (62)-( 65), the sum over the four-vector k, 
l:k> actually represents the integrals f dk/(2'1T) 3 f dUJ/2'1T. 
The four diffusion coefficients Dnn, DnT • D Tn , and DTT 
can therefore be written as 

f dk dUJ 
Dab = (2'1T)3 2'1T DabCk,UJ), (79) 

where Dab(k,UJ) is a diffusion coefficient per unit frequency 
bandwidth and wave number bandwidth. If we use Eq. 
(75) for the frequency spectrum, the integrations over UJ in 
(62 )-( 65) can be performed in the complex plane by the 
method of residues, closing the contour of integration in 
the upper-half plane. The pole of the plasma dielectric 
function (UJk,Yk) is in the lower-half complex plane, and 
does not contribute to the integral. We find 
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where 

xr-x:-) 1 
Xi-X! -iUJ 

x [(l--r)Ho+rAo] 1 . ' (81) 
W="'k+IYk 

and similar expressions for the three other coefficients. In 
Eq. (81), Ik is the frequency-integrated spectrum, defined 
by (76). If we assume isotropy in the (kr,ko) plane, the 
functions Dabek) = Dab(kO)' The mixing-length estimate of 
Dnn is given by 

where T ~ w; 1. Therefore, 

... .. 
ES 
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FIG. 4. (al Contributions of the circulating electrons to the coefficients Dnnl Dnr • Drn , and DTT • nonnalized to the mixing-length estimate lJ'lL. (b) 
Contributions of the trapped electrons to the coefficients Dnn. Dnr • Drn , and Drr , nonnalized to the mixing·length estimate JYliL. 
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T 2 Z 2 . 

L (C) ( le'l'kl' \ 1 nM (k,m) ~ eB Jil To 1m; (83) 

and 

(84) 

In Fig. 2Ca), we show the diffusion coefficient Dnn(ke) 
normalized to the mixing-length value IJMLCke) for vari­
ous values of ria. These results are independent of our 
choice for the frequency-integrated spectrum I k • In 
Fig. 2(b), we show Dnn(ke)1 Do, where Do 
= 0.41(cTleB)2p;2m;t. for the particular choice of Ik 
given in Eq. (77). The three other diffusion coefficients, 
namely Dnr(ke), Drn(ke), and Drr(ke) have k depen­
dences very similar to that of Dnn(ke). 

h. Spatial dependence of the diffusion coefficients. The 
transport coefficients Dab are obtained by integrating the 
coefficients Dab(k) over k using (77) for I k , 

Dab= J (:)3 Dab(k). 

In Fig. 3(a), we show the coefficients DaV nML
, where 

IJML= J nML (k)dkI(21T)3, as a function of the normalized 
radius ria. If we assume Eq. (78) for the radial depen­
dence of the potential fluctuation spectrum, 
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nML cc2Crla)[1-(rla)2f In Fig. 3(b), we show the co­
efficients (DaV IJML) X2Crla)[1- Crla)2f. All four coef­
ficients have similar radial dependences. Experimentally, 
the heat conductivity DTT is found to increase with r near 
the edge. Our result does not follow this prediction. How­
ever, all the calculations presented in this work are valid in 
the "interior" of the tokamak plasma, not near the edge, 
where other physical mechanisms prevail. 
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FIG. 6. Spectrum modulation coefficients In and IT' 
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c. Relative contribution of trapped and circulating elec­
trons. The diffusion coefficients Dab' given by Eqs. (62)­
(65) in Sec. II can be written as the sum of two compo­
nents, representing the contributions of the trapped and 
circulating electrons. For example, Dnn can be written as 
Dnn=U,tn+D~n with 

If.. = _ (
CT

o)2 I IkXb 12(1 xr-x~) 
nn eBo k ° xi-xf 

X (r!:I) ~iW (l-r)Ho (85) 

and 

(86) 

In Figs. 4(a) and 4(b), we show the contributions 
from the trapped and the circulating electrons to the coef­
ficient Dnn/ JjML. The contribution from circulating elec­
trons is very small compared to that of the trapped elec­
trons, even though the numbers of circulating electrons 
and trapped electrons are comparable in the midplane of 
the tokamak (r - iii = ~2r/R = 0.5; cf. Appendix A), 
and there are much more circulating electrons than 
trapped electrons at r/a=0.1(1-r-0.8). Therefore the 
analysis of the problem could be simplified by considering 
adiabatic circulating electrons. This has been pointed out 
for quasilinear calculations as well. 84 

Note that all the diffusion coefficients are positive (cf. 
Fig. 3). The contribution from the circulating electrons to 
the off-diagonal diffusion coefficients DnT and D Tn is neg­
ative, whereas the contribution from the trapped electrons 
is positive. Since the trapped electrons dominate, the off­
diagonal diffusion coefficients are positive. It has been sug­
gested that the negative off-diagonal diffusion coefficients 
obtained in calculations involving only circulating elec­
trons could explain the "inward" convective motion ob­
served in modulation experiments. However, as we have 
shown here, the presence of even a very small population of 
trapped electrons is sufficient to guarantee the positivity of 
all four diffusion coefficients. 

d. Comparison with test-particle results. The function 
Dnn is given by Eq. (62), obtained from our DIA calcula­
tions. The test-particle result is recovered by dropping the 

(v'1C/w",) J [dk/(21T)3} (dw/21T) (I e~k/ToI2) 
where 

term proportional to lI(Xi-X;) in this expression. In Fig. 
5 we compare the DIA and test-particle (TP) results for 
Da~JjML. 

The diffusion coefficients calculated by the DIA are 
larger by a factor 2-4 than those obtained in the TP ap­
proximation. The disagreement between the two methods 
is largest for D Tn , breaking the Onsager symmetry in the 
DIA result. 

e. Onsager relations. Systems that are out of equilib­
rium generally return to the equilibrium state through a 
variety of irreversible transport processes. Onsager8S

,86 de­
rived "reciprocal relations" connecting the corresponding 
transport coefficients. These relations reflect, on the mac­
roscopic level, the time reversal invariance of the micro­
scopic equations of motion. For example, a particle density 
gradient can cause a heat current, and a temperature gra­
dient can cause a particle current. The transport coeffi­
cients for the two processes are equal. The entropy produc­
tion (due to the irreversible processes occurring in the 
system) is a bilinear expression in the fluxes and thermo­
dynamic forces. The calculation of the entropY production 
therefore provides a way of finding the proper "conjugate" 
irreversible fluxes and thermodynamic forces necessary for 
the establishment of the phenomenological equations 
whose coefficients obey the Onsager relations. 

From Fig. 3, we note that the two off-diagonal coeffi­
cients of our transport matrix, D nT and D Tn , are not equal, 
i.e., the Onsager symmetry observed in quasilinear and 
test-particle results is not present here. This is not under­
stood at present, but has been observed in other studies of 
anomalous transport.87,88 One difficulty is to find the "cor­
rect" conjugate fluxes and forces. In particular, we have 
not been able to find an expression for the entropy produc­
tion in the complex system studied here. It is possible that 
Onsager symmetry should not be expected in the case of 
anomalous transport, but this remains to be explained. 

3. The spectrum modulation 
In Sec. II, we have calculated the spectrum modulation 

produced by perturbations in density and temperature, and 
the result was written as 

ik,ko Vno VTo 
- 2 In(w,ke) -+IT(w,ke) -, (87) 

< 1 etPklTo I > no To 

where In(w,ke) and I r(w,ke) are given by (69) and (70). 
If we integrate these results over the frequency and wave 
number, we obtain 

(88) 

J [dkI(21T)3] (dw/21T) (I e~k/ToI2>Re{[ (keP-S)/(Xi-X;)] (w",/ -iw) [(l-r)Ho+rAon 

In= f[dk/(21T)3](dw/21T)( I e~k/ToI2) (89) 

and 
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We have plotted the coefficients In and IT in Fig. 6. We 
find that In and IT are of the order of 0.05, whereas 
(v2Cs)/co*-44. Therefore, the spectrum modulation is 
comparable in magnitude to the density modulation, as 
observed experimentally.61 

We should note, however, that from Eq. (66), the co­
efficients In and IT are real. Therefore, (68) implies a 
phase variation (along the radius r) for the spectrum mod­
ulation similar to the one for the density modulation. Ex­
periments, on the other hand, show that the phase of the 
spectrum modulation is constant throughout the plasma, 
and does not change with the radius, whereas the phase of 
the density and temperature do vary with the radius. 89 This 
is not explained by our model. . 

IV. SUMMARY AND DISCUSSION 

In this work, we have developed a new approach to the 
calculation of anomalous transport in tokamak plasmas. 
Our method is based on the direct-interaction approxima­
tion, a renormalized theory of turbulence that provides the 
response functions due to infinitesimal perturbations. The 
method is particularly well suited to comparisons with per­
turbative transport experiments. Moreover, important 
physical properties, such as the ambipolarity of the particle 
fluxes, are automatically satisfied. 

The theoretical expressions obtained for the transport 
coefficients are based on a specific set of equations describ­
ing the dynamics of the plasma and on the DIA, but do not 
require any further approximations. We have not at­
tempted to calculate the fluctuation spectrum from first 
principles. Rather, we have expressed our results in terms 
of the potential fluctuation spectrum, and we have used 
experimental data in all numerical evaluations. 

We have studied the electron dynamics in detail, but 
we have used a simplified treatment of the ion dynamics, 
assuming the presence of an anomalous ion viscosity. The 
form of this anomalous viscosity was chosen in such a way 
that the frequency peak and bandwidth of the fluctuation 
spectrum agree with those observed in the Texas Experi­
mental Tokamak (TEXT). It would be interesting to study 
what happens with different values of the ion viscosity, in 
particular, it would be interesting to try different power 
laws for its wave number dependence. According to some 
preliminary results, it seems that a high dissipation is 
needed at the long wavelengths. A simple power law with 
a positive exponent does not provide enough dissipation at 
the small wave numbers. It is possible that a more sophis­
ticated model is needed, where different dissipation mech­
anisms prevail for different ranges of wave numbers. Dis­
sipation at small scales can be provided by viscosity effects, 
whereas it is conceivable that dissipation at long wave­
lengths could result from geometry effects or shear. It is 
also possible that the nonlinear ion damping rate and the 
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(90) 

mode width are not related through each other locally in 
wave number space, as was assumed here, but instead 
through an integral. relation. 

We have concentrated on drift-wave turbulence, which 
appears to be an important source of anomalous transport 
in tokamaks. We have used a simplified slab geometry, 
neglecting the magnetic shear and curvature but retaining 
the distinction between trapped and circulating electrons. 
Magnetic shear and toroidicity have been shown to modify 
the stability of drift waves in the linear regime.90,91 How­
ever, there are good reasons to believe that the effect of the 
shear in the strong turbulence regime might be less impor­
tant than in the linear regime. Indeed, the decorrelation 
time of the mode92 is very small in this regime (.~COk-COk)' 
and is probably smaller than the characteristic time needed 
for the mode to be stabilized by shear. Nevertheless, it 
would be interesting to prove this particular point by cal­
culating the transport coefficients, using the method devel­
oped here, with a model including the magnetic shear. 

The theoretical expressions for the transport coeffi­
cients have been obtained with few assumptions besides the 
chosen plasma model and the DIA theory. However, to 
obtain numerical results that can be directly compared 
with experiments, we needed to adopt a specific set of tok­
amak parameters. We chose the TEXT tokamak, since a 
fairly complete set of data for the fluctuation spectrum in 
the interior of this tokamak was available. 

All four diffusion coefficients (relating the fluxes of 
particles and heat to perturbations in the density and tem­
perature gradients) were found to have similar radial de­
pendences. Experimentally, the heat conductivity is found 
to increase with radius near the edge. Our result does not 
follow this prediction. However, all the calculations pre­
sented in this work are valid in the "interior" of the 
plasma, rather than near the edge, where other physical 
mechanisms might prevail. We found that the contribution 
from circulating electrons is very small compared to that of 
the trapped electrons. Therefore, the analysis of the prob~ 
lem could be simplified by considering only the transport 
due to the trapped electrons. It was found that all the 
diffusion coefficients· are positive. The contribution from 
the circulating electrons to the off-diagonal diffusion coef­
ficients is negative, whereas the contribution from the 
trapped electrons is positive. Since the trapped electrons 
dominate, the off-diagonal diffusion coefficients are posi­
tive. It has been suggested that the negative off-diagonal 
diffusion coefficients obtained in calculations involving 
only circulating electrons could explain the "inward" con­
vective motion observed in modulation experiments. How­
ever, we showed that the presence of even a very small 
population of trapped electrons is sufficient to guarantee 
the positivity of all four diffusion coefficients. We have 
argued that this is not in disagreement with an observed 
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effective inward convective velocity term in the expression 
for the particle flux. The diffusion coefficients are about 
two to four times larger than predicted by the test-particle 
approximation. The difference is largest for the coefficient 
relating the heat flux to a perturbation in the density pro­
file, breaking the Onsager symmetry in the DIA result. 
This last result is very important, since Onsager symmetry 
is commonly assumed when analyzing experimental data. 
Our results show that it is incorrect to make that assump­
tion when studying the anomalous transport matrix. 

The modulation of the fluctuation spectrum that re­
sults from a modulation of the density or temperature pro­
files was calculated using the DIA method. This result 
cannot be obtained from simpler turbulence theories such 
as quasilinear theories. The spectrum modulation was 
found to be comparable in magnitude to the density mod­
ulation, as recently observed in TEXT. 

It is now commonly accepted that perturbative and 
equilibrium fluxes differ if the diffusion coefficients depend 
on the plasma parameters, which is the case if they are 
produced by turbulence. Recent modulation experiments 
in TEXT showed that the perturbed fluxes are linearly 
proportional to the density modulation amplitude, but they 
are usually larger than the equilibrium fluxes. Because of 
the linear relation between the perturbative fluxes and the 
density perturbation, the incremental transport can be de­
scribed by a transport matrix. On the other hand, if the 
equilibrium fluxes have a complicated dependence on the 
gradients, a transport matrix has very little meaning. We 
believe that much can be learned from perturbative trans­
port experiments. 

The results obtained here were expressed in a form 
such that they can be easily compared with experiments. 
Since we need experimental data for the frequency and 
wave number dependence of the fluctuation spectrum, new 
experiments, yielding more detailed results on the turbu­
lence characteristics, would be welcome. In particular, it 
would be very useful to obtain the information on both the 
fluctuations and the perturbative transport during the same 
experiment. This would allow a direct comparison between 
theoretical predictions and measured data. 
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APPENDIX A: USEFUL INTEGRALS 

The trapped-electron integrals are defined by 

I J fo (V2 _3V;)n 
An=- 1'( /) ---;:;-:-:z- dv, nOt t +1 Veff. W 2ve 

(Al) 

where nOt is the equilibrium density of trapped electrons. 
Since only v appears in the integrand, the integral can be 
rewritten as 
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4 ('" 
=-rn- Jo 

e-,2(?_~)n 

1 +i( v*lw)r-3?- dr, (A2) 

where T = ~2d ( 1 + E) is the fraction of trapped particles. 
These integrals can be calculated numerically. 

The circulating-electron integrals are defined by 

1 f fo (V2_3V;)n 
H n = - ----;;-:-:z- dv, 

noc c l-kll vn Iw 2ve 
(A3) 

where noc is the equilibrium number density of circulating 
electrons. These integrals must be calculated by integrating 
over the proper range of velocities for the circulating par­
ticles: 

nO 1 J + 00 iU1I/.rr=:T 
Hn=- (2 2)3/2 dVIl 21TVl dVl noc 1TVe -co 0 

X 1 II e d 
e-(V~ +vr l/2v; (V2 +vT. _3v2)n 
l-kll VII Iw 2v; v. 

They can be performed analytically. For n=O, 1 and 2, we 
obtain 

(A5) 

and 

1 w [1 w [(1 w )2 IJ 
H2=1-Tv'2kuve :;:v'2k ll ve :;:v'2knve -:2 

[(
1 w )4 (1 W )2 5] (1 w ) 

+ :;: v'2kll Ve - :;: v'2kU Ve +4 Z :;: v'2kll Ve 

- v'2~1 Ve [ ( v'2~1 vJ 2 -~ J - [ (v'2~1 vef 

- (v'2~1 vef +~lZ( v'2~1 vJ}· (A6) 

In these expressions, Z(S') is the plasma dielectric func­
tion. Note that in the limit T--+O, we have 
Z[(1h)(wlv'2kll ve)]-- -[(1h)(wlv2kU ve)]-I, and all 
the terms involving liT disappear from the expressions for 
HI!' 
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APPENDIX B: LlNEARI2ED ELECTRON EQUATIONS 

The linearized electron equations are obtained by let­
ting the right-hand sides in Eqs. (20) and (21) go to zero. 

The adiabatic part of the fluctuations can be eliminated 
by writing 

(BI) 

where he and ht are the nonadiabatic distribution fluctua­
tions. If we Fourier transform in space and time, the lin­
earized circulating and trapped electron equations then be­
come 

-i(a>-kll VII )h~-i(a>-a>*)fo(eikITo) -q(lk) =0 
(B2) 

and 

(B3) 

where the velocity-dependent diamagnetic frequency a>* is 
given by 

(B4) 

The velocity-independent diamagnetic frequencies are 
given in terms of the density and temperature gradients by 

eTa Vno 
(r)n = _- k 0 boX-

* eBo no 
(B5) 

and 

T eTa VTo 
a> =--koboX __ =1Ja>n, (B6) 

* eBo To * 
where 1J= 1 (VT oITo)/(Vnolno) I. The collision operators, 
given by Eq. (25), can be written as 

and 

~=-Veff[h~+fo e!: (l-X;-~X~ V2~~V;)] 
(B7) 

~ fa J rl fa etPk J [-iVeff(a>-(r)*) 
Ck=-- l,k dv=--- fa --.---'---

noc t noc To t -1a>+Veff 

( 
2 2 3 2). ] L L V - Ve la>Veff 

+ l-Xe --3XT 2 2 _. + dv, (BS) ve UiJ Veff 

where we have used Eqs. (26) and (27), which define X; 
and xf:. This result can be rewritten as 

.- etPk 
Ck= -ufo To ' (B9) 

with 

u= (nO/nOe) [ ~i(a>-a>~) (l-Ao) -ia>;1JAl 

+ia>(1-X;) (1-Ao) +ia>(~)X~Ad, (BlO) 

where the trapped electrons integrals An have been defined 
in Appendix A by Eq. (AI). The linearized electron equa­
tions become 
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and 

+Veff( l-X;-~ X~V2~!V;) ko(e~k) =0. 

We define the propagators 8i and 8i by 

(gD-1=-i(a>-kll VII ), 

(g~)-l= -ia>+Veff, 

and we will also use the following notations: 

(B12) 

(B13) 

(B14) 

(BI5) 

so that the linearized electron equations can be rewritten as 

(g,) -tfi,,+bkfo(eikITo) =0, 

(g~)-lhk+bVo(eikITo) =0. 

The system of equations, 

and 

X~= - ;0 [ fe g~kfOC2~lV;)dv 
r t (V

2-3V;)] + Jt g',jJVo 2V; dv 

(B17) 

(BIS) 

(B19) 

(B20) 

is easily solved for X; and xf:. More specifically, using the 
integrals An and H n, defined in Appendix A by Eqs. (AI) 
and (A3), X; and xf: are solutions of the following system 
of equations: 

X;[ l-r( I-Ao) (I-Ho) 1 + (~) ~€Al (I-Ho)X~ 

and 

= (1-r) [(l-Ho) + (a>;Ia>)(Ho+1JH I) 1 

+r(a>~/a>)[ (Ao+1JAl) + (1-Ao-1JA1)Hol (B2l) 

=r(a>;Ia» [(AI +1JA2) + (1-Ao-1JA 1)HtJ 

+ (l-r) [(a>;Ia» (HI +1JH2) -Hd· (B22) 

If we use the simplest collision operator (24), the coeffi­
cients X; and xf: are given by 
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and 

(B24) 

APPENDIX C: DERIVATION OF THE TRANSPORT 
COEFFICIENTS 

Working in Fourier space and using the notations in­
troduced in Appendix B, the nonlinear equations for the 
nonadiabatic distribution fluctuations h'ic and h~ are 

- -
~-lhk+bkJo(e::)= f, Wk"k-k'C::')h~-k" (CI) 

- -
g~-lh~+bVoC::) = f, Wk"k_k,(e::')h~_k" (C2) 

where the nonlinear coupling coefficient Wk',k-k' is given 
by Wk',k_k'=(cToIeB)bo'(k'Xk) with k=(k,m). The 
equations for the forced beat fluctuations are therefore 

gk-1hk(1) +bkJo(e¢11) ITo) 

= - Wk,"o(eITo) (¢,/tko -4>"ohk>, 

g,,-lh~l) +bVo(e¢11) ITo) 

= - Wk,"o(eIT) (¢,/t~ -4>"oh,,), 

nil' =nOXi(e¢k') ITo), 

n;;(l)-n:::il) ik - ek 

= f (1I?)+7~1»dv 
-(1) 

=no(e~: ) + f (hk(1)+h,,(1»dv, 

(C3) 

(C4) 

(C5) 

(C6) 

where ko and wo are the wave numbers and frequency of 
the perturbations. We have used the separation of scale 
Ikol ~Ikl, so that k-ko=k. __ 

We now solve this linear system for h,,(1), hi(1), iilP, 
and ¢}/). We find 

596 Phys. Plasmas, Vol. 1, No.3, March 1994 

h~t(l)=g~tb~tfo X~~ (;J f [¢k(gkhko +gkh~) 
-4>"o(g~k+gkhk> ]dv 

-gc/Wk.ko( ;J (¢,/t~-4>"oh~t). (C8) 

The anomalous fluxes, in the DIA framework, are 
therefore 

fiJiA = (v1!) he•t + v Jic.t( 1» 

=_i(Ce:
o) t kXbo ( (e~~»)h~t* _ (e;:)h~t(1») 

=-i(:~) t kXbo ( (e~:») 
X [ h~t* + (e;:)g~tb~tfo 1 

+ (e;:)g~tWk."o( ;J (¢,/t~-4>"oh~t) ). (C9) 

Before we develop the calculation further, let us notice 
that the test-particle result, obtained by letting ¢k') go to 
zero in the preceding formula, is given by 

(ClO) 

Using the lowest-order approximation for h~ and 4>"0' we 
can express the fluxes in terms of the sources g as 

Note that the fluxes of trapped particles and circulating 
particles are completely decoupled in this approximation. 

The fluxes obtained with the DIA method can now be 
written as 

We see here that the fluxes additional to those obtained in 
the quasilinear approximation couple the three species of 
particles through Xi- X~' which is closely related to the 
plasma dielectric. The flux of electrons is obtained by in­
tegrating tiJiA over the velocities, 
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(C13) 

with 

and where we have used the ion equation (22) and the 
quasineutrality equation (23) to write 

(C!:) f (hf +hr)dV) =(xt-l)no( le!:I)· 
(CI5) 

The flux of heat is obtained from the second velocity mo­
ment of r~om' 

Here, we still need to calculate the correlations, 

These correlations can, in principle, be deduced from the 
spectral DIA equations. However, we will instead use a 
simpler procedure and modeL the v~ocity dependence of 
the distribution fluctuations l:!% and !!l. If we assume that 
the velocity dependence of h% and h~ is the sa!!le as tEe 
velocity dependence of the linearized values of h% and h~ 
i.e., that the correlations have the form 

(CI7) 

with lPk independent of velocity; then the quasineutrality 
relation determines (:;;;Z'ik), and we find 

Phys. Plasmas, Vol. 1, No.3, March 1994 

Therefore, eq. (CI7) simplifies to 

(CI8) 

so that 

(CI9) 

with 

(C20) 

If the density profile is perturbed, the fluxes of particles 
and heat are 

(C21) 

. Ii (CT)2 (* XL) r =ib"_~ _0 LlkXbl2 l_Xi - e 
DIA ""0 n eB 0 v _XL o k A.i e 

X f (gk+ltc)fo dV ( le!:I), (C22) 

1 flo ( CTO)2 ~ 2 
-T qQL=iko- -B £..lkXbol 

o no e k 

(C23) 
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x f (gk+g~)fodV] (le!:I), (C24) 

where we have used Eq. (18) for t" and gt. If the temper­
ature profile is perturbed, the fluxes of particles and heat 
are 

rQL=lko ~: (C;;r t IkXbol2 

rl- 2 - 2 

X f (gk+g~)fo ~~Ve dV( le::1 I' 
rDIA=lko ~: (:~r t IkXbol2 f (gk+gk> 

xfo rl-~iV; dV(l Xr-xt) (le!kI 2
\, 

Ve Xi-Xe 0 I 

(
rl-_3V2)2 

xfo ~ dv 

1 (Xr-l L* L) 
- Xi-X~ X;* -1 Xr -Xr 

"_2 3 2 - 2 

f u-- Ve ] (Ie¢kl ) X (gk+gi)fo~dv To ' 

where we have used Eq. (19) for t" and gt. 

(C2S) 

(C26) 

(C28) 

APPENDIX D: INCREMENTAL VERSUS EQUILIBRIUM 
FLUXES 

The anomalous transport has been conventionally 
studied analytically by calculating total fluxes across mag­
netic surfaces. However, many experiments measure the 
transport of perturbations, such as heat pulses. It has been 
observed experimentally as well as shown analytically that 
incremental fluxes resulting from small perturbations are 
quite different from equilibrium fluxes. 

Let us assume that the nonlinear equilibrium electron 
flux r can be written under the following very general 
form: 
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where no, To, Vno. and VTo are the equilibrium values of 
the density, temperature, and their gradients, Dn and Dr 
are diffusion coefficients, and Un and U r are convection 
velocities. If the flux is produced by the turbulence,. the 
parameters Dn. Dr. Un' and Ur are functions of the equi­
librium plasma parameters. Now, let us perturb the plasma 
with an external infinitesimal source. The nonlinear flux r 
will be perturbed as well, and the linearized, or incremental 
flux can be written as 

sr= (~)o Sn+ (aa~n)oS Vn+ (~~)o ST 

+ (/;T ts VT+''', (02) 

where on, S Vn, ST, and 0 VT are the perturbations of the 
equilibrium plasma density, temperature, and their gradi­
ents, and the subscript "0" means that the quantities in 
parentheses must be evaluated at the equilibrium. Those 
derivatives can be evaluated from Eq. (01) and written as 

(ar) [(aDn) (aDr) an 0= - an 0 Vno- an 0 VTo 

(ar) [(aDn) (aDr) aT 0= - aT 0 Vno- aT 0 VTo 

( ar) [ ( aDn ) (aDr) aVT 0= - aVT ovno- aVT 0 VTo 

Replacing these results in Eq. (02), we can rewrite the 
linearized incremental flux as 

sr= - dnncro Vn- d¥cro VT + U~cr Sn+ Uirer oT, 
(03) 

with 
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+(~~)ono+(~itTO' 
Comparing the linearized incremental flux, we See that 

the incremental transport coefficients are very different 
from the equilibrium ones. The only case where these two 
sets of coefficients are identical is when the equilibrium flux 
is linear in the plasma parameters, which is not the case 
when this flux is produced by the turbulence. 
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