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A new method for calculating the anomalous transport in tokamak plasmas is presented. The
renormalized nonlinear plasma response function is derived using the direct-interaction
approximation (DIA). A complete calculation for the case of electrostatic drift-wave turbulence
is presented. Explicit expressions for all coefficients of the anomalous transport matrix relating
particle and heat fluxes to density and temperature gradients in the plasma are obtained. The
anomalous transport matrix calculated using the DIA does not have the Onsager symmetry. As
an example of application, the parameters of the Texas Experimental Tokamak (TEXT) [Nucl.
Technol. Fusion 1, 479 (1981)] are used to evaluate all transport coefficients numerically, as
well as the spectrum modulation. The relation between the theoretical results and the
experimental data is discussed. Although this paper focuses on electron transport for simplicity,
the method can also be used to calculate anomalous transport due to ion instabilities, such as the

ion-temperature-gradient instability.

I. INTRODUCTION

To sustain thermonuclear reactions in a tokamak, the
plasma must be confined well enough to overcome heat
losses. The confinement of the energy for a long enough
time is a major difficulty in magnetic fusion. ‘

It is well known that classical calculations of heat dif-
fusion based on kinetic theory (using, for example, the
Fokker—Planck or Balescu—Lenard collision operators; see,
e.g., Braginskii' or Hinton?) yield transport coefficients
which are in complete disagreement with observations. So-
called “neoclassical” transport theories are still based on

classical collisional processes, but take into account the

toroidal geometry of a tokamak.** According to neoclas-
sical theories, the electron heat conductivity is smaller than
the ion heat conductivity by a factor \m,/m; However,
measurements (in Ohmic discharges) indicate that, al-
though the ion heat transport appears to be well described
by neoclassical results,>’ the electron heat transport is
sometimes as much as two orders of magnitude larger.>®
The energy transport is therefore completely dominated by
the electrons in those cases. This so-called “anomalous
transport” is the subject of this work.

Today, the design of fusion reactors relies heavily on
empirical scaling laws deduced from extrapolation of ex-
isting experimental data.>"!! Unfortunately, these extrapo-
lations are unreliable, since the parameters of future reac-
tors are often very different from those of existing
machines. A more fundamental understanding of transport
in tokamak plasmas is therefore critical to the design of
future generations of reactors.'? Recent reviews on the
present status of experiments and theoretical models can be
found in Boozer et al.,'* Wootton et al.,'* Burrel et al.,"’
Houlberg ez al.,' and Kaye et al.'’
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It is now widely accepted that the anomalous transport
in tokamaks results very likely from the presence of a sat-
urated spectrum of fluctuations in the plasma, produced by
microscopic turbulence (see, e.g., the reviews by Tang,8
Horton,'® and Liewer!'?). For example, in the presence of
fluctuating electric fields, transport of particles across the
magnetic flux surfaces can occur through the EXB drift.
In the presence of fluctuating magnetic fields, the magnetic
flux surfaces are destroyed and electrons can flow outward
along the perturbed field lines. Possible sources of turbu-
lent fluctuations include drift modes, 2 dissipative
trapped electron (DTE) modes,>* ion-temperature-
gradient modes,?>26 electron-temperature-gradient
modes,?” and microtearing modes.?

The relatively low frequency (w0 50.5 MHz<(};, the
ion Larmor frequency) of small-scale (k, p;<1) density
and potential fluctuations observed in some tokamak
experiments®®~? suggests that drift waves and DTE modes
may be responsible for the anomalous transport. Drift
waves are unstable, low-frequency waves produced in any
plasma having spatial inhomogeneities and a magnetic
field. They propagate mainly in the direction perpendicular
to both the density gradient and the magnetic field, but
they have a finite parallel wave number, which allows elec-
trons to flow freely along the field lines. Their simplest
dispersion relation is of the form w=k-v,, where
v,=—(cT/eB)byX (Vny/ny) is the diamagnetic drift ve-
locity (see, e.g., Nicholson??). Recently, it has become ev-
ident that the ion dynamics can also play a crucial role in
the anomalous transport because of the ion temperature
gradient (7),) instability.?>?® Indeed, it has been observed
that the Ohmic confinement time saturates at high density
an order of magnitude below the predictions of neoclassical
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theory, indicating anomalous ion losses.>* In addition, it
was observed that pellet injection improves the ion energy
confinement, while leaving the anomalous electron thermal
losses unchanged.>® Far-infrared laser scattering experi-
ments on the Texas Experimental Tokamak (TEXT)3¢
showed that the onset of fluctuations propagating in the
ion direction coincides with the saturation of the energy
confinement time with density,”” which strongly suggests
an association between the anomalous ion losses and the
saturation of the energy confinement time.

Many calculations of anomalous transport have been
performed®**! in the so-called “quasilinear” approxima-
tion of weak-turbulence theory (see, e.g., Kadomtsev*? and
Sagdeev and Galeev*®). In these calculations, the level of
turbulence is assumed to be low enough so that the non-
linearities can be treated perturbatively. To obtain closure,
the weak-turbulence expansion must be truncated to some
order. The “quasilinear” theory corresponds to truncating
this expansion to first order.*>*3 The transport can be cal-
culated from correlations of fluctuations, obtained from the
linearized equations. The important effect considered in
quasilinear theory is the wave-particle interaction, but the
mode-mode coupling terms are neglected. However, exper-
iments suggest that mode-mode coupling effects are, in
fact, very important, and that the weak-turbulence condi-
tion is usually not satisfied.>

In a strongly turbulent plasma, the nonlinearities are
essential and the perturbative approach of weak-turbulence
theory fails. The goal of renormalized plasma turbulence
theories is to simplify the nonlinear problem by attempting
to describe only the macroscopic statistical averages of the
fluctuations. Examples of such renormalization techniques
include the “resonance broadening”** and “clump”*® cal-
culations, as well as methods based on the direct interac-
tion approximation.*>**° Renormalization prescriptions
are generally untested closure assumptions, which should
be treated with caution. However, the direct interaction
approximation (hereafter DIA) provides an exact descrip-
tion of certain stochastic models, such as the random-
coupling model®® and the Langevin equation.’' Further-
more, the DIA method automatically satisfies the self-
consistency constraints arising from the strong coupling
between electromagnetic fields and particle densities
through Maxwell’s equations. These constraints are not
satisfied in quasilinear calculations.

Since the DIA method is based on the evaluation of
averaged infinitesimal response functions, it naturally pro-
vides the incremental fluxes resuliing from small perturba-
tions of the equilibrium profiles, rather than total fluxes
accross the magnetic surfaces.”” It is therefore particularly
well suited to comparisons with the recent gas puffing, pel-
let injection, and heat pulse propagation experi-
ments.!>**5¢ These experiments are performed either by
using externally imposed modulated sources or by taking
advantage of naturally occurring phenomena such as saw-
teeth oscillations.’*> In contrast to quasilinear calcula-
tions, we will show that the DIA formalism can also be
used to study the modulation of the fluctuation spectrum
caused by external modulated perturbations. Such spec-
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trum modulation measurements have been performed re-
cently in TEXT.

Traditionally, the transport of particles and heat in
tokamaks have been studied as two independent problems,
with the particle flux related to the density gradient by
Fick’s law, I'= — D Vn, and the heat flux expressed in
terms of the temperature gradient as q= —ny VT In these
simple laws, the diffusion coefficient D was assumed to be
independent of the temperature gradient, and the heat con-
ductivity y was assumed to be independent of the density
gradient. However, recent experimental and theoretical
studies have shown that it is incorrect to assume no cou-
pling between energy and particle transport.*®! If the
transport is due to turbulence, the coefficients D and y will
be functions of the plasma parameters. Any theory of tur-
bulent transport should therefore produce a full transport
matrix, including off-diagonal coefficients, rather than just
two coefficients D and y (see Gentle et al®').

In this work, we use the DIA technique to calculate
the transport matrix (diagonal and off-diagonal coeffi-
cients) corresponding to perturbations in the density and
temperature profiles. The theoretical expressions obtained
for the transport coefficients are based on a specific set of
equations describing the dynamics of the plasma and on
the DIA, but do not require any further approximations.

Even though the current interpretation of transport
experiments in tokamaks is that the ion dynamics plays a
crucial role in the anomalous thermal transport, we con-
centrate, for simplicity, on the role played by the electrons,
and give the ions a secondary role in this paper. Our
method can, in principle, account for the ion dynamics as
well by choosing an appropriate form for the ion nonlinear
susceptibility (see Sec. II). Here, however, detailed numer-
ical estimates are given only for a very simple ion suscep-
tibility, which does not necessarily represent the complete
physics of anomalous transport in tokamaks. This choice is
discussed in more details in Secs. III and IV. In addition,
we use the simplest possible model for the electrons them-
selves, ignoring the complications coming from the toroi-
dal geometry, such as magnetic curvature and shear. With
these simplifying assumptions, we are able to present a
completely self-consistent, yet tractable calculation of
anomalous transport in a strong-turbulence regime.

Our work is presented in two papers. In this paper we
consider the transport due to electrostatic drift-wave tur-
bulence. In a companion paper,” we use the method de-
veloped here to calculate the transport due to drift-Alfvén
wave turbulence, i.e., including the effects of magnetic fluc-
tuations.

This paper is organized as follows. In Sec. II, we give
the basic assumptions and the model equations describing
the dynamics of the plasma. We present a method based on
the DIA to calculate the transport matrix coefficients. The
results are given in a very general form, in terms of the
potential fluctuation spectrum. In Sec. III, we give a brief
review of fluctuations and transport experiments. As an
example of application of our method, we give numerical
estimates of the transport coefficients corresponding to the
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parameters of the TEXT tokamak. Finally, in Sec. TV, we
give a summary of the principal results.

Il. ANOMALOUS TRANSPORT FROM DRIFT-WAVE
TURBULENCE

In this section, we develop a method to determine the
transport coefficients associated with drift-wave turbulence
in a tokamak plasma. In Sec. IT A, we introduce the fun-
damental kinetic equations, which serve as a basis for the
theory, and we specify the geometry of the problem. In Sec.
II B, we exploit the separation of time scales and length
scales in the problem to derive two separate systems of
equations: one describing the transport, the other describ-
ing the turbulent fluctuations. Finally, in Sec. II C, we
derive a statistical solution for these equations using the
direct interaction approximation (DIA), and we give ex-
plicit expressions for the anomalous fluxes of particles and
heat.

A. Basic equations
1. Electron dynamics

When considering plasma phenomena of low fre-
quency compared to the electron gyrofrequency, such as
drift waves, the electron dynamics can be described by the
drift-kinetic equation (hereafter DKE). This equation de-
scribes the motion of the guiding center of the particles,
and is obtained by averaging the Vlasov equation over the
rapidly oscillating component of the motion (see, e.g.,
Kulsrud® and Landau and Pitaevskii®). It is given by

af 3
2tV OtV f1+V - (o bf ) 45—

X[(__E” L VB)f =C(f), (1)

where f (x,0) Hu,8) s the electron distribution function,
p=mu} /2B is the electron magnetic moment, C(f) is
the collision operator, and parallel || and perpendicular L
subscripts refer to the direction of the magnetic field. In
this equafion, the EXB drift velocity is - given by
vy=(c/B)EXDb, while the magnetic drift velocity
vp=(1/BQ,) (v} 72)bXVB+(1/Q,)v] (RzXb), where
b is a unit vector parallel to the magnetic field, Q, is the
electron gyrofrequency, and Ry is vector curvature radius
of the magnetic field lines.

In this section, we will consider the electrostatic limit
(E=—V¢, where ¢ is the electrostatic potential) of the
DKE, which is valid when the plasma parameter
B<(m/m;) (see, e.g., Miyamotoﬁs). We consider the more
general electromagnetic case [E=—V¢— (1/¢)0A/d7] in
Paper II. We distinguish between the two different popu-
lations of electron in a tokamak: circulating and trapped
(see, e.g., Miyamoto“). In this work, for simplicity, we
ignore the magnetic shear% and curvature in the tokamak,
i.e., we consider a uniform magnetic field B,. As a conse-
quence, vp=0 and VB=0. The presence of trapped parti-
cles is therefore the only VB effect that we consider.

The ‘circulating electrons have |y /vy | > (2¢)?,
where e=r/R is the inverse aspect ratio of the tokamak (r
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and R are the minor and major radii of the tokamak). The
orbits of circulating electrons have no turning points;
hence they “circulate” around the torus. The distribution
function ﬁ(x,vll 2} 1) of circulating electrons obeys the
following DKE;

af° e arc . :
§+VE'VfC+U]| v fc—l-‘.m_evu ¢W=Cc(fc,ft)-

(2)

The collision operator C, will be specnﬁed below [Eq.
(25)].

The trapped electrons, instead, . have |v” /v |
< (2€)2, implying the presence of turning points in their
orbits (“banana orbits;” see, e.g., Miyamoto®). For these
electrons, the DKE can be further simplified by “bounce
averaging,” i.e., averaging over the rapid oscillatory mo-
tion of the guiding center in the toroidal direction. The
bounce-averaged DKE is valid for frequencies smaller than
the bounce frequency, i.e., for ® <wp,= \/Eve/ (Rq), where
v, = +T¢/m,is the electron thermal velocity, Ty is the elec-
tron temperature, m, is the electron mass, and ¢q is the
tokamak safety factor (see, e.g., Gross®’). The bounce-
averaging procedure eliminates all the terms that are odd
in vy from the DKE. The distribution function
Si(x, .7 ,t) for the trapped electrons therefore satisfies

S e VF=ClP. S

2. lon dynamics

Our work will focus on the electron nonlinearities. For
simplicity, the ion dynamics will be treated in the fluid
limit. In this limit, the ion density #; can be written quite
generally as®®%

ni/no=(ed/To)x|6]»), (4)

where ng is the equilibrium ion density (we take Z=1),
and y;(|#]?) is the nonlinear ion susceptibility, which de-
pends on the frequency and the power spectrum of the
potential fluctuations. The results of this section are given
in terms of an unspecified y;. In Sec. III we will introduce
a specific form for y;, which will allow us to obtain nu-
merical results.

3. Self-consistency constraint

It is important to maintain the self-consistency of the
model, since the electromagnetic fields and particle densi-
ties are strongly coupled through Maxwell’s equations.
Theories that are not self-consistent, such as those based on
the quasilinear approximation, usually violate the 1mpor—
tant property of ambipolarity of the particle fluxes.*°

Here the system of equations (2)—(4) describing the
particle and field dynamics is closed by the addition of the
quasineutrality relation, valid for scales larger than Ay, (the
Debye length),

nx,t) =n,(X,1), (5)
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where n,(x,2) = [ f,dv=
density.

J(f°+ f1)dv is the total electron

4. Geometry

Since we assume that By is uniform and that the tur-
bulent length scale is smaller than the macroscopic scales
on which density and temperature vary (cf. Sec. II B), the
problem can be studied locally. We can therefore use a
local Cartesian geometry, in which x>0 represents the ra-
dial coordinate, y represents the poloidal coordinate, and z
is the coordinate along the field line. The origin is at the
center of the minor radial section of the tokamak. The
magnetic surfaces are therefore planes with x=const. Note
that the plasma density and temperature are constant on
magnetic surfaces (see, e.g., Gross?).

B. Separation of scales

1. Motivation

For our study of anomalous transport, the basic set of
equations [(2)-(5)] can be rewritten as two separate sys-
tems of equations: one describing the turbulence, the other
describing the transport. This separation can be done be-
cause turbulence and transport correspond to widely dif-
ferent time scales and length scales. The two systems of
equations remain coupled through their nonlinear terms.

For drift-wave turbulence the typlcal frequencies and
wave numbers are @ ~a,, k| ~p; ! and k| ~(qR)
where o, =— (cTo/eB)k-bOX (Vny/ny) is the electron
diamagnetic frequency, p; is the ion gyroradius at the elec-
tron temperature, and gR is the connection length (i.e., the
length of the helical trajectory of a circulating particle; see,
e.g., Gross67). In contrast, the transport occurs at the very
low frequency wg, and very small wave number k; of the
external perturbations. For example, the typical frequency
for modulated gas puff experiments in the Texas Experi-
mental Tokamak (TEXT) is w,S240 rad/s<o,~ 10°
rad/s (cf. Table I). The poloidal and parallel wave num-
bers for the transport both vanish because the fluxes are
averaged over the magnetic surfaces (perpendicular to the
x axis). The radial wave number ko~ L7 !« ps_ , where

=|ny/Vhy| is the (macroscoplc) density gradlent
length scale. For example, in TEXT, kq,~0.04 cm™" and
p;'=8 cm™! (cf. Table I).

2. Transport equations

In the following calculations, we will use an overcaret
for quantities that vary on the transport scales, and an
overtilde for turbulent quantities. Subscripts 0 will be used
for the equilibrium values of the parameters.

In this work, we develop a method to calculate the
anomalous fluxes resulting from small external perturba-
tions. We study the modulation due to these perturbations
on the transport scales. Therefore, we add external, infin-
itesimal, velocity-dependent source terms §°, § , and §’ to
Eqgs. (2), (3), and (4) respectively. As described in Sec.
II B, these sources have frequencies wy€w, and wave num-
bers ko, < p;". The electron distribution functions f* are
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then the sum of an equilibrium part f, a fluctuating part
7%, and the response to the modulation f

fo=fot FH+ T, (6)

where the equilibrium distribution function f; is a local
Maxwellian,

no(x) [ To(x)\ 32 —mp?
G () oolmi) @

ngand Ty being the local electron density and temperature.
We assume’ ¢,=0.

The eguatrons describing the (infinitesimal) response
functions f', F%, A;, and ¢ to the external perturbations are
obtained by taking the low-frequency and long-wavelength
limit of Eqgs. (2)—(5), and averaging over the magnetic
flux surfaces (i.e., k) 0=0). This gives

fO(X’vz)

A

I2) A . o
31:+<'v“s-wf>=<cc>+§f, (8)
' ~ A
a—‘i+<vE-fo>=<c,>+§f, 9)
Ri=no(e¢/To)xi+E, (10)
== [ o+, (11)

where the angular brackets denotes an ensemble average
over the turbulence. Equations (8) and (9) can alsc be
wntten in terms of the incremental anomalous fluxes

o= (vEf " ag’t

a A1
g: +Ve. rc, ""(Cct)'f'gc

(12)
These phase-space fluxes I' are velocity dependent. How-
ever, since the collision frequency v, >y, the distributions
j‘” and f F* are nearly Maxwellian on transport scales.
Therefore we can use the corresponding moment equations
to calculate the fluxes of particles and energy. These are
obtained by integrating (12) over velocity. We obtain

a4 o n

GHVE= [ da (13)
where the particle flux density

r,= f (Fet-1)dv, (14)
and

ai

at—{-V Q= TOJ.é'jdv, (15)

~

where #i=(3)nT is the energy density and Q=T,

[ (F°+1¥) (v¥/202)dv is the total energy flux density. Us-
ing the continuity equation (13), the energy equation
(15) can be rewritten as an evolution equation for the
temperature,
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3 9T 3, ,\vz—3v§dA 6
no at—!—V q+§ n'VTo-——To g_zjz—' Vv, ( )

where the net energy flux § is obtained by substracting the
energy convected by the particles from the total energy
flux Q,

~ 3 . U
('iEQ—-i TOI‘,,=T0f (re+1r" —2;7—dv. (17
[-4
Note that we have omitted the terms representing the clas-
sical and neoclassical fluxes (i.e., those corresponding to
the collision terms (C,,}) in Egs. (15) and (16).

To evaluate f‘,, and §, we consider perturbations of the
equilibrium density and temperature profiles. The Max-
wellian distribution depends on the temperature and den-
sity as foxnoTy /% exp(—mv?/2T,). Therefore, if we
perturb the density profile, f, is perturbed according to

L f_ . fy
0 ano 0 1o ’

and the corresponding sources are

TS
§C=§t= —lwofo ; s
(V]

J ée dvzﬁo.

If we perturb the temperature profile, f, is perturbed ac-
cording to

. 3fo
T°aT

(18)

o

—iwo

=30} T
f 0 Z T ’
and the sources are

3U To
E= §t"(—lwo)fo —*"'2_ Ty’

(19)

Jg"dv 0.

Note that in both cases we insist on injecting the same
number of ions and electrons in order to preserve the
quasineutrality of the plasma.

===-lCO0

3. Turbulence

The anomalous fluxes I depend on the turbulent
spectrum of fluctuations. These fluctuations are described
by the following set of nonlinear equations:

E e ~ -
(6t+U" V" )fc+VE Vfo—l- V“ ¢8U| —C,=—Vg VS5
(20)
a ~ ~ _ ~
_a_t.fl‘*"vE'va_Ct:—vE'vfl, (21)
ny ‘-’$
n_ozFOXi’ (22)
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=i | Gt Fram (23)
obtained from Egs. (2)-(5) by using the expansion
(6). We have neglected the nonlinear term
—(e/m)V) ¢ 1¢) f/av" , since this term does not contribute
directly to the spatial fluxes.

We now specify the form of the collision operators C’
and C On the time scale of drift-wave turbulence, the
circulating electrons are collisionless, since o, >v,;. The
trapped electrons, however, have an effective collision fre-
qUENCy Veg~wy <w,. This “detrapping” frequency is ve-
locity dependent, and is given by vg= =I‘(ve/v) , where
V4= "Vei/€. Some authors have used very simple collision
operators, given by

Cr=—vVegf "

C,=0. (24)

However, these collision operators do not conserve the
number of particles, since electrons detrapped by a colli-
sion do not reappear as circulating electrons. Therefore,
the use of Eqs. (24) could introduce errors in the calcula-
tion of the transport. A better choice would be to adopt an
energy-dependent linearized BGK operator (Bhatnagar,
Gross, and Krook™) of the type

)

')
c—_(L f &, v,
nOc t

where, 71,=n.+#C is the total fluctuating electron density,
and ng,= [ .fo dv is the equilibrium number density of cir-
culating electrons. This collision operator not only con-
serves the total number of particles, but also vanishes when
[ is a perturbed Maxwellian. Unfortunately, it couples the
two electron equations [(20) and (21)] through their non-
linear terms. Although we could, in principle, solve the
problem with this collision operator, it complicates the al-
gebra substantially For the sake of simplicity and clarity,
we will replace n, and T in Eq. (25) by their linear ap-
prommatlons nk and TeL, given by

C= —Verr

(25)

— = f dev——(éXe (26)
L)
and
TL 2 o, P=3%  2ep
e - L e _—_r L
To 31, 20 dv=37 X7 (27

where f":(f’—}—f’)" is determined from the linearized
form of Egs. (20)-(23). Explicit expressions for XEL (the
electron susceptibility) and y7 are derived in Appendix B.

C. Statistical solution of the model equations
1. The direct interaction approximation

In well-developed turbulence, perturbed quantities can
be treated as statistical variables. The equations for the
moments of these statistical variables form an infinite set of
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differential equations. The direct interaction approxima-
tion (hereafter DIA) method provides an approximate
way of closing this infinite set of coupled equations into a
definite set, containing only moments below some finite
order. It presents many advantages over alternative theo-
ries of turbulence. In particular, it conserves energy and
the positivity of the energy spectrum, two important fea-
tures that are not present in simpler theories such as those
based on quasinormal approximations.*

In principle, the DIA method allows the determination
of both the response functions and the turbulent spectrum
at saturation. Here, however, we will use the method to
determine the response functions in terms of the saturation
spectrum, which we assume to be known experimentally
(see Sec. III).

The DIA method is based on the evaluation of average
infinitesimal response functions that naturally provide the
incremental fluxes resulting from small perturbations of
the equilibrium profiles, rather than total fluxes accross the
magnetic surfaces.’? This is particularly well suited to com-
parisons with the recent perturbative transport
experiments.'>! Indeed, although anomalous transport
has been studied traditionally in terms of total equilibrium
fluxes, many experiments now study the transport of small
perturbations, such as heat pulses. It has been observed
experimentally®® and can be shown analytically (see Ap-
pendix D) that the incremental fluxes resulting from small
perturbations are quite different from the equilibrium
Sluxes.

For detailed descriptions of the DIA method and dis-
cussions about the validity of this procedure, the reader is
referred to the review articles by Kadomtsev,*? Leslie,?”’
Krornmes,48 and Similon and Sudan.*’

2. Anomalous fluxes

Let us denote the first-order fluctuating quantities in
the small parameter expansion by f"“) SO 7 and
qS“) These “forced beat” fluctuations have frequencies
o' =wy—o and wavelengths k’=k;—k. We rewrite the
transport equations (8)-(11) as

27 57+ T VAT V) =(C + £,

(28)

afr+(~(”-vf’+?E-Vf’“’)=<éz>+§': (29)
n,=noxi%i+5u (30)
=he= [ (e fan (31)

From Eqs. (28) and (29), we see that the anomalous
fluxes I'“! are

- = (T ot for Dy, (32)

On the other hand, the DIA equations for the forced beat
fluctuations, obtained from the system of Eqgs. (20)-(23),
can be written as
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a ~ ~
(Ez““’u \ )f“’+V§z‘”Vfo—~C§”

= — (Ve Vo475 V1), (33)
f’(l)—{-"(l)-Vfo—-af’):—('V"E'Vf"+‘"75'V7'), (34)
D =ng(ed ™M/ To)xin (35)
“=ﬁf,”=f(ff”*+f"”)dv. (36)

Note that in Eq. (35) we have neglected the effects of the
beat potential on the nonlinear ion susceptibility y;. This
simplification is one of the main limitations of our treat-
ment.

The set of Egs. (33)—(36) is linear in the beat Auctu-
ations. It can be solved explicitly for 2, 710 7 and
¢! (which vary on the turbulent scale) in terms of the
responsge functions f, 7 ;s qb, and the fluctuating quan-
tities f%, j" #;, and $. These results are then used to cal-
culate the velocity-dependent anomalous fluxes I‘CIA in
terms of the fluctuation spectrum. Here we only provide a
sketch of the derivation. The reader is referred to Appen-
dix C for more details.

The calculations are performed in Fourier space. The
Fourier transforms (in space and time) of Egs. (33)-(36)
are

(&5) ™D 185, foledin’ /To)

=— Wi, (e/Tp) (¢fhk0 St ), (37)
(&) B 8 foled / To)
= — Wi e/ To) (Bt} — i k), (38)
A =noled ) /To)xis (39)
1 1 e~§ci’ (W r(n
r"z’fk?—r“zﬁk?—no(—To—) f (A dv. (40)

Here ko= (ky,wy), k= (k,w), and k'=(k',0’) =ky—k are
the wave vectors of the external perturbations, the fluctu-
ations, and the beat fluctuations, respectively. The electron
distribution functions have been expanded into their adia-
batic and nonadiabatic parts as f%'= foed/To+h"". The
nonlinear coupling coefficient is given by

Wiky=(cTo/eBo)by (kXkp). (41)

The propagators g and g}, for the circulating and trapped
electrons are defined by
gi=[—ilo—kyv )1~ (42)
and
gi=[—io+ve] ™! (43)

Finally, the coefficients b} and b} are
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by=—i(w—wy,)+0y (44)

and
2 2 3p?

L e
SXT—EE_)s (45)

where o07,(v), given by Eq. (B10) of Appendix B, is a col-
lision frequency defined by Ci=—orfoledr/Ty), and
wy=—(cTy/eBy)k+byX (Vny/ng) is the diamagnetic fre-
quency.

Solving the linear system of Eqgs.
RO, B 5D and 62, we find

71
ey -1 e T (oChC 7t
Ll —"1 Wk,koﬁ f [$x(ghk, +&ik,)

— i, (Gi+ i) 1dv

b§c= —l(w_a)*) +Veﬁ‘(1_XeL_-
(37)-(40) for

(46)
and
eg;(l) e ~ A A~
_ c,tbc,t —W, — (-3 S hc,t .
8 by fono T W T, (Bl — Pr i)

(47)

The coefficients ¥~ and y; have been defined in Eqgs. (26)

and (4). The quantity y,—yZ is proportlonal to the plasma

dielectric function & (w,k)=(@ e/kve) (X, Xe L. Equa-

tions (46) and (47) g1ve the beat quantities in terms of the
response functions ¢k0 and A%, and the fluctuations. The

DIA fluxes I‘”’IA are then obtained in terms of the external
perturbations as

<~( 1 )hc,t_l_?bj;c,t(l) )

pa(1)
R =

(¢To
"”“‘(E) 2 kX sy —

()

1 ¢ £ tEr
v (f(g€+gk§ )dv)

(& (o) e (1))} o

where the response functions have been replaced by their
lowest-order approximations (obtained by neglecting the
nonlinearities),

A,t

k= and ¢ =O0. (49)

—1
Note that in Eqs. (46)-(48), we have used the separation
of scale |ky| €| k]|, so that k' =ky—k~—k.

Note that the expression (48) for the perturbed anom-
alous fiuxes T4%, is independent of the details of the elec-
tron and ion equations, requiring only that they can be
written in the form (37)-(39).

The test-particle result is recovered by letting $§’ —0
in Egs. (37)-(40) (This is equivalent to assuming that the
electromagnetic fields are not directly affected by the per-
turbations.) This gives

KV = — Wi (e/ To) (B~ i D,

(50)
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and the test-particle fluxes are

A cT
ret =i 72 2 kXbW o ——

e¢k >

(i
(s1)

We note that, as expected, expression (51) is independent
of y;, ie., I‘C’P is independent of the ion dynamics. Indeed,
since we have neglected classical collisions, electrons and
ions can interact only through the electromagnetic fields.
However, the test-particle approximation assumes that the
fields are not affected by density perturbations, and there-
fore the electron incremental flux must be independent of
the ion dynamics.

As an example of the test-particle limit, we can calcu-
late the flux of circulating electrons for a purely resonant
propagator, i.e., gx=m8(w—k v ). Then

nTP— JFTP dv

CTO T
=Hhy ;E(‘)’ zk: (kXbo) J;‘

— (cTo/eBy)k- (boXiky) (Ag/ng) <
X
Ik" IU

e¢k
Ty

).
(52)

This result has the same form as the quasilinear result for
the equilibrium flux, given by'?

Z w*co

2 |k" ]Ue

4 T()
=Ny 5" BO

e¢k ) ' (53)

The test-particle result (52) can be obtained from the qua-
silinear expression (53) by taking the perturbation of this
expression, ignoring the perturbation of the spectrum and
the normal frequency .

We now proceed with our DIA calculation. Using Eq.
(51), the DIA ﬂuxes can be rewritten as

1 1
— iy Xi—Xe

( i (gk§f+gk§f>dv)( (78"

)

The additional term present in the DIA result is due to the
quasineutrality constraint. This term is proportional to
1/(xi—xE), ie., to the inverse of the plasma dielectric
function & (w,k). Note, also, that the fluxes of trapped
particles and circulating particles are coupled through
% (w,k) in the DIA result.

We can now obtain the fluxes of particles and heat
using Eqs. (14) and (17) for perturbations in the density
and temperature profiles given by (18) and (19). If the
wavelength of the perturbation is smaller than the density
gradient length scale, i.e., if kg, L,> 1, the results can be
written in the form

. eT
I, =19 +ig ZkXboWk,ko

(54)
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I',=—D,, Vig— D,r(ny/To)VT, (55)
and
(‘i= — DTnTO Vﬁo— DTTnO V:f‘o, (56)

where the four diffusion coefficients D,,, D,r, Dr,, and
Dy are given by

—1 T 2 Xi—Xe
D= (eB) 2 [kXby| (1—_‘7‘}( v )
X <I§,ﬁ‘ > f(g2+g2)fo dv,

0

—1 (eTo\? ¥—xr
D= (S5 ) 2 IeXbo2(1-2—2
eBo k

(57)

ny Xi—Xe

ed, 2 v?— 3p?
X Iﬂ f (8i+8k) fo—7—dv, (58)
TO 2Ue

f (85+8:) /o

Hgo eB

—1 /c
Dpy=—- ( °) 2 |kXby|?

v — 302

1 Xt'—l L* L
dv—
20, Xi—X: (XL* 1 X7 XT)

f (gi+8k) fo dV] ( ﬁ:l >

—1 [feT
Dyr=—o (ZBE) 2 |kXb0|2[ J. (8548 /o

X

(59)

Ry

2 — 302 Zd 1 x¥ =1 .
() e (e )

e

f(gk+gk)foﬁ°—2_d I<‘€¢k )

Equations (55) and (56) can be combined using the anom-
alous transport matrix,

f‘,, -Dnn DnT Vﬁo R 61
((1/%)&) == (DT,, DTT) ((no/To)VTo)' (61)

The four diffusion coefficients (57)—(60) will be eval-
vated in Sec. III for specific density and temperature pro-
files. We have chosen to write the transport matrix (61) in
such a way that the flux of particles I', and the net heat
flux § are given in terms of the density source Ay and the
temperature source 7y. The transport matrix is then sym-
metric in the test-particle limit, i.e., Dor = Div. It is im-
portant to realize that, although it is very simple in analytic
calculations to consider pure density sources or pure tem-
perature sources, this is not possible experimentally. In-
deed, density and temperature are not eigenvalues of the
coupled density and temperature evolution equations (13)
and (16). Therefore, they will, in general, be perturbed
simultaneously (cf. Sec. III B).

The integrals over velocity space in Eqs. (57)-(60)
can be evaluated explicitly since fj is a Maxwellian distri-

(60)
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bution, and the propagators g§ and g}, are known. In terms
of the *circulating integrals” H, and the “trapped inte-
grals” A, defined in Appendix A, the diffusion coefficients
can be written as

cTo\? Xt —xe
Dm,=—(;B—°) )) thbolz(l—X'T-r)

1
( }“”‘ )—.—[<1~T)Hg+mo], (62)
et (13}
To\’ F—x!
() o225
s
><( %‘ )—m[(x—r)fmml], (63)
T, 1
DTF"(ZBO) 2 [kXbo|? —— [[(1~T)H1
1 Xi L% L
+TA1]———L (—_XT —XT)
—~Xe \yF -1
egkz
X [(1=) Ho+ ] ({—T— ). (64)
Q

T,
DTT=__(5—9) 2 |kXby|?—— [[(I—T)H2+TA2]

__ 1 (x=t
Xi—Xe Xe

X[(1—7)H +74,]

XT —XT)

egk 2
<I Ty > ’
where 7, calculated in Appendix A, is the fraction of
trapped electrons.

The test-particle results are recovered by dropping the
terms involving a 1/(y,— Xf) in expressions (62)—(65).
This is equivalent to letting the dielectric go to infinity, i.e.,
ignoring the electromagnetic field response.

Note that the expressions for the transport matrix co-
efficients are rather complicated, and cannot be expressed
as simple scaling laws. Furthermore, there is no simple
relation between the various transport coefficients. It has
been recently argued that simple scaling laws cannot ex-
plain the experimentally observed features of the perturba-
tive fluxes.®!

(65)

3. Spectrum modulation

When the equilibrium density and temperature profiles
are modified by external perturbations, the saturation spec-
trum is also perturbed as a result. In recent experiments in
TEXT, the spectrum modulation resulting from the mod-
ulation of the gas feed has been measured. It is not possible
to calculaie the spectrum modulation in the quasilinear or
test-particle approximations. Indeed, these methods ne-
glect the effects of the beat potential, which is responsible
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for the spectrum modulation. However, as we show in this
section, it is straightforward to obtain this information us-
ing the DIA method.

The spectrum at a wave number k is given by I
= ((e/ T0)2¢k¢f). The modulation of the spectral compo-

nent I at a frequency and wave number ko= (ko,wp) is -

denoted by [ i, and can be obtained using the DIA
method. We obtain

Triy={(/ To) $ibi 1) +(e/ To) 3 by, i)

=2 Re((e/T)*3585"), (66)
where we have used the separation of scales
k'=ky—k=~—Fk. In the test-particle limit, # 50 and
Ik, = 0. Using the result (46) for ¢{"), we can rewrite
(66) as

2 -2 1 € 2 2 aChC nt
Ik’k":Re[x_;——xf Wk’ko-n_o (?0) J. <[¢k(gkhko+g;chko)

,~¢k0(gzhz+gzhz>1¢z>dv}- (67)
Now, using Egs. (18) and (19) for the perturbations of
density and temperature, and Eq. (49) for the lowest-order
response functions, we obtain the relation between the rel-
ative spectral modulation and the relative density and tem-
perature modulations as

vT,
T TO >

I ki Vi
n

( |€¢k/To|2) Ry

with the coefficients

(68)

I,,=Re( 2 _To, L [(1—T)Ho+mo]) (69)
Yi—X: eBy —iw
and
IT=RC(—'2—E’C'EI€9“‘}.‘" [(1—7)H1+TA11)~
Xi—Xe eBo " —io

(70)

In these equations, we have used the velocity integrals H,
and A4, defined by Egs. (A3) and (Al) in Appendix A.
Numerical estimates of these coefficients are given in Sec.
111, and can be compared with those from modulation ex-
periments.

1. THE ANOMALOUS TRANSPORT MATRIX

A. Summary of recent experiments

1. Measurements of the transport coefficients

Thermal and particle transport coefficients have been
determined traditionally from the study of the steady-state
power and particle balance. Recently, however, a new type
of method has been developed, which involves perturba-
tions of the steady-state profiles and the analysis of the
subsequent relaxation processes. These perturbations can
be imposed externally or can result from naturally occur-
ring phenomena such as the sawtooth collapse.
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The first direct measurements of transport coefficients
from the propagation of heat pulses produced by the saw-
tooth collapse appeared in the late 1970s.”>" Since then,
the method has been used in many experiments at the
TFTR (Tokamak Fusion Test Reactor),”*® JET (Joint
European Torus),57 and TEXT (Texas Experimental
Tokamak)>® tokamaks (see Wesson’s Tokamaks™ for gen-
eral information about these machines). Most recently, ex-
periments have been performed where the injection of gas
in the tokamak (gas feed) is modulated in time.®! In these
gas feed modulation experiments, it has been possible to
measure the modulation of the density and temperature
profiles as well as that of the turbulent spectrum.

Discrepancies have been reported between the trans-
port coefficients measured from steady-state power balance
analysis and those deduced from the analysis of pulse prop-
agation. However, it is now understood that this discrep-
ancy is perfectly natural, since the two methods actually
measure different physical properties of the plasma.’® In-
deed, the diffusion coefficients associated with the evolu-
tion of perturbations of the profiles are obtained by linear-
izing the transport equations about an equilibrium state.
We have shown in Sec. II that these coefficients are differ-
ent from those determining the steady-state transport.

It is difficult to separate experimentally the effects due
to density perturbations from those due to temperature
perturbations. This is because changes in the density profile
induce changes in the temperature profile, and vice versa.
It was shown both experimentally’”’ and theoretically’®
that the density and temperature are not eigenvectors of
the transport problem. They are coupled through the off-
diagonal terms of the transport matrix. As a result, the
measured fluxes always involve several transport coeffi-
cients. Recently, a framework for the interpretation of cou-
pled heat and particle transport has been developed,’® and
the experimental results expressed in terms of a transport
matrix with nonzero off-diagonal terms.**’¢ In practice,
modulated transport experiments allow the extraction of
both diagonal and off-diagonal transport coefficients.

2. Measurements of the fluctuations spectrum

Another class of experiments has focused on the source
of the anomalous transport, i.e., the plasma microturbu-
lence.

In the late 1970s, a low-frequency, long-wavelength
broadband turbulence spectrum propagating in the direc-
tion of the electron diamagnetic velocity was detected in
TEXT using multichord FIR (far infrared radiation)
interferometry. L? Unfortunately, FIR scattering has a
poor spatial resolution for small values of the wave number
(k, <4 cm™1).% This is a problem because the fluctuations
spectrum is large in that range of wave numbers. The other
method available to measure the spectrum in the confine-
ment region, namely heavy ion beam probe (HIBP®") has
a good spatial resolution, but is insensitive to large values
of the wave number (k, >4 cm™ D). In particular, the two
experimental methods give quite different measurements
for the average poloidal wave numbers in TEXT
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(kgp,=0.3 from FIR results and %4p,=0.1 from HIBP
results).®?

Because of the complexity of the measurements and
their interpretation, direct comparisons between theoreti-
cal and experimental resulis remain very difficult.

B. Numerical results

1. Choice of paramelers

The theoretical expressions for the transport coeffi-
cients were obtained in Sec. II, with few assumptions be-
sides the chosen plasma model and the DIA theory. How-
ever, in order to obtain numerical results that can be
directly compared with experiments, we need to adopt a
specific set of tokamak parameters, as well as an explicit
form for the nonlinear ion susceptibility y;.

a. The TEXT tokamak. A fairly complete set of data
for the fluctuation spectrum in the interior of a tokamak
was obtained in the Texas Experimental Tokamak
(TEXT).*! We will therefore adopt the TEXT parameters
for our numerical estimates. The major radius R=1 m, the
minor radius a=25 cm, and the ratio gR/a~ 10. For the
electron temperature and magnetic field, we take T)=1
keV and By=26 kG, which represent typical experimental
values.’! In Table I we list the values of the principle pa-
rameters in TEXT.

We adopt a parabolic radial profile for the equilibrium
density, no(r) =n,(1 —7%/d%). For the equilibrium temper-

r/a=0.5
Ou04 \‘1‘r|“|\|“\|‘|\‘

0.02

w/(Vaky,)

-0.02

FENEI A SN S A SN N AR AT

0 02 04 06 08 1
ko,

FIG. 1. Normal mode frequency wy, and growth rate ¥, normalized io
vZ|k; |v,, as a function of the normalized poloidal wave number kqp;, in
the midplane r/a=0.5.

ficients n, and T, are the equilibrium values of the density
and temperature at the center of the plasma, i.e., at r=0.

b. The ion susceptibility. The ions will be modeled by
cold fluid equations with an eddy viscosity v;. This viscos-
ity provides the necessary sink of free energy and over-
damps the unstable electron waves. The ion continuity and
momentum equations are

ature profile we take To(r)=T,(1—r/a®)? so that ‘_af_:‘_i_v. (ng¥) =0 (71)
n=d In Ty/d In ny=2 is independent of radius, The coef- ot 0%
TABLE 1. TEXT tokamak parameters (cgs units).
Parameter Symbol Typical value
Major radius R Ilm
Minor radius a 25 cm
Safety factor q qR/a=10
Central electron temperature To 1 keV
Central electron density g 4x 10" em~?
Toroidal magnetic field B 26 kG
Plasma B parameter B=4mnsTy/ B 0.001

Velocities

Electron thermal velocity
Ton sound velocity

Alfvén velocity

Electron diamagnetic velocity

Frequencies

Electron—ion collision frequency
Electron diamagnetic frequency
Ion cyclotron frequency
Electron bounce frequency
Electron plasma frequency

Lengths

Ion gyroradius
Debye length

v,=(To/m)"?
es= |To/m;
va= B/ (dwngm,)'/?
U*= 108 Tg'v In nol/B

Q=eB/mC

@y=0,/qR
Wpe== (dnge?/m )2

ps=Cs/Y
Ap-(To/4mnge?)V?

1.325%x 10% em/s
3.10x10% cm/s
9 10% em/s
1.5% 10* em/s

6 10°% rad/s
10% rad/s
2,49 108 rad/s
5.30¢ 10® rad/s
3.57x 10! rad/s

0.124 c;n
37x10° cm
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FIG. 2. (a) Diffusion coefficient D,,(ky), normalized to the mixing-length estimate DM'“(ks), as a function of the normalized poloidal wave number
kgp;, for several values of the radius »/a. (b) Diffusion coefficient D,,(kg), normalized to Dy, as a function of the normalized poloidal wave number

kgp;, for several values of the radius 7/a.

and

Ti_e( _viilexs v, 72

3 m\ ¢+ ViXBo | +v; V'V, (72)
where ¥; is the ion velocity and m; is the ion mass. By
taking the Fourier transforms of these equations in space
and time and solving them perturbatively in the limit

0<);, we find

 ep
nO_—ITO Xi:
with
=2 1+, 73)

where [';=K2v; is an effective eddy viscosity damping,
which depends on the turbulent spectrum. Note that this
very simple form of the ion susceptibility does not neces-
sarily reflect any direct contribution of the ions themselves
to the anomalous transport. Furthermore, we assume that
the ions are cold, ie., T;€7,, which is usually not true,
especially in the larger tokamaks.

It is known from experiments®' that the frequency
spread A, of the fluctuations spectrum remains compara-
ble to the normal mode frequency @y over the entire range
of relevant wave numbers, i.e., for 0.1<k; p,<1.0. Since we
assume that the ion nonlinearities are the only cause of
spectrum broadening, the requirement that Awy~ ey im-
plies a scaling

D=,/ (2K p2).

Since w, «ck, , we have® Iy k!,
The normal mode frequency and growth rate are found
by solving the dispersion relation,

% (0.k) < [y{ k) —yF(wk)] =0,

where o=y + iy, ¥~ is given by Eq. (B19) of Appendix
B and y; is given by Eq. (73). The results for o, and ¥, are
plotted in Fig. 1 as a function of kg, in the tokamak mid-

(74)
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plane r=0.5a. Note that the damping rate ¥, is about half
the mode frequency w,, in accordance with our choice for
I';, Eq. (74).

¢. The fluctuation spectrum.” We assume that the fre-
quency dependence of the experimental potential fluctua-
tion spectrum can be represented by a simple Lorentzian
profile centered on the eigenfrequency, so that

2%

e$k 2
( > H(w—wk)z-!-;klk

Ty
where I, the frequency integrated spectrum, is defined by

Ik5f< e‘Zk

T,
Note that y; gives the half-width at half-maximum.
The spectrum [, has been measured in TEXT.*! We
model the data by

0, if ky<1.41 cm™L
1, if 1.41 cm™'<ky<2.83 cm™}
(ko/2.83) %, if kg>2.83 cm— L.

(75)

2> do (76)

E.

I, =041X

(77

Note that we introduce a cutoff at the small wave numbers,
and the constant 0.41 is chosen such that
[ I, dk/(2m)3=1. We have assumed isotropy in (k,.kp),
i.e., in the direction perpendicular to the magnetic field, as
was also assumed in the interpretation of the experimental
data.’!

Finally, we use the “mixing-length” estimate of the
potential fluctuation spectrum to model its radial depen-

dence,
2 P: 2 0 4 r 2
)~(Z) 02 (2)

(

2. The diffusion coefficients

T (78)

In Sec. I, we have derived general expressions for the
diffusion coefficients, given by Eqs. (62)—(65). We now
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FIG. 3. (a) Spatial variation of the diffusion coefficients D,,, D,r, Dr,, and Dy, normalized to the mixing-length estimate DML, (b) Spatial variation
of the diffusion coefficients D,,, D,r, Dr,, and Dyy, obtained assuming DM« (#/a)[1— (#/a)*1%

use the parameters described in the previous section to
evaluate numerically the diffusion coefficients.

a. Wave number dependence of the diffusion coeffi-
cients. In Eqgs. (62)—(65), the sum over the four-vector k,
3., actually represents the integrals [dk/(27)* [dw/2w.
The four diffusion coefficients D,,, D,;, Dy,, and Dyp
can therefore be written as

dk do

Da= | Gyt 37 Das(lec), (79)
where D, (k,w) is a diffusion coefficient per unit frequency
bandwidth and wave number bandwidth. If we use Eq.
(75) for the frequency spectrum, the integrations over o in
(62)-(65) can be performed in the complex plane by the
method of residues, closing the contour of integration in
the upper-half plane. The pole of the plasma dielectric
function (wy,yy) is in the lower-half complex plane, and
does not contribute to the integral. We find

ak D, (k 80
Dnn=f (2—77_)3 nn( )s (80)

TTTYTTTTTT T T T v d
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where

do
D= [ 52 Dunll)

eTo\? )(’-"—XL 1
_[&o X 2 A e}
(eBo) bl I"[(l x:—xf) —iw

X [(1—7)Hg+7A4o] , (81)

w=wk+iyk

and similar expressions for the three other coefficients. In

Eq. (81), I is the frequency-integrated spectrum, defined

by (76). If we assume isotropy in the (%,,kq) plane, the

functions D, (k) = D,,(kg). The mixing-length estimate of
D,, is given by
c\2

DML~(§) |E|*r, (82)

where 7 ~ Oy !, Therefore,

zllll‘ilillllllll
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FIG. 4. (a) Contributions of the circulating electrons to the coefficients D,,, D,r, Dr,, and Dy, normalized to the mixing-length estimate DM, (b)
Contributions of the trapped electrons to the coefficients D,,, D,r, Dr,, and Dy, normalized to the mixing-length estimate DML,
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2
' —1

| ) N |
M= [ 52 DM (ko) ~(-§-§)k2m;11k. (84)

In Fig. 2(a), we show the diffusion coefficient D, (k,)
normalized to the mixing-length value DM (k) for vari-
ous values of »/a. These results are independent of our
choice for the frequency-integrated spectrum I,. In
Fig. 2(b), we show D,,(ky)/D,, where D,
= 0.41(cT/eB)*p; %", for the particular choice of I
given in Eq. (77). The three other diffusion coefficients,
namely D,r(kg), Dr,(kg), and Dy r(kg) have k depen-
dences very similar to that of D,,(kg).

b. Spatial dependence of the diffusion coefficients. The
transport coefficients D, are obtained by integrating the
coefficients D, (k) over k using (77) for I,

e$k

T 2
DML(k,aJ)~(£—) k2< T (83)
0

eB

and

ak D
Dab=f a3 26(K).

In Fig. 3(a), we show the coefficients D,/ DML where
DML= [ DML(k)dk/(2)3, as a function of the normalized
radius #/a. If we assume Eq. (78) for the radial depen-
dence of the potential fluctuation spectrum,
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DML« 2(r/a)[1—(r/a)*]% In Fig. 3(b), we show the co-
efficients ( D,/ DMF) x2(r/a)[1— (#/a)*%. All four coef-
ficients have similar radial dependences. Experimentally,
the heat conductivity Dy is found to increase with » near
the edge. Our result does not follow this prediction. How-
ever, all the calculations presented in this work are valid in
the “interior” of the tokamak plasma, not near the edge,
where other physical mechanisms prevail.
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FIG. 6. Spectrum modulation coefficients /,, and Ir.
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¢. Relative contribution of trapped and circulating elec-
trons. The diffusion coefficients D,,, given by Egs. (62)-
{65) in Sec. IT can be written as the sum of two compo-
nents, representing the contributions of the trapped and
circulating electrons. For example, D,, can be written as
D,,= Dfm+ D:m with

D§n=—(CT°) )3 [kXbolz(l—X—;‘%)

9¢k
X( To > _—lm(l—T)Ho (85)
and
cTo\’ Xt —x:
D ,=—|— kXbg |3 1T
nn (e.Bo) % I OI ( Xi—Xe )
egk 2 1
X ( TO > —_—I‘EO-TAO (86)

In Figs. 4(a) and 4(b), we show the contributions
from the trapped and the circulating electrons to the coef-
ficient D,,/DML. The contribution from circulating elec-
trons is very small compared to that of the trapped elec-
trons, even though the numbers of circulating electrons
and trapped electrons are comparable in the midplane of
the tokamak (7 ~ \/i = 2#/R = 0.5; cf. Appendix A),
and there are much more circulating electrons than
trapped electrons at 7/a=0.1(1 —7~0.8). Therefore the
analysis of the problem could be simplified by considering
adiabatic circulating electrons. This has been pointed out
for quasilinear calculations as well

Note that all the diffusion coefficients are positive (cf.
Fig. 3). The contribution from the circulating electrons to
the off-diagonal diffusion coefficients D, and Dy, is neg-
ative, whereas the contribution from the trapped electrons
is positive. Since the trapped electrons dominate, the off-
diagonal diffusion coefficients are positive. It has been sug-
gested that the negative off-diagonal diffusion coefficients
obtained in calculations involving only circulating elec-
trons could explain the “inward” convective motion ob-
served in modulation experiments. However, as we have
shown here, the presence of even a very small population of
trapped electrons is sufficient to guarantee the positivity of
all four diffusion coefficients.

d. Comparison with test-particle results. The function
D,, is given by Eq. (62), obtained from our DIA calcula-
tions. The test-particle result is recovered by dropping the

where

term proportional to 1/(y,— yZ) in this expression. In Fig.
5 we compare the DIA and test-particle (TP) resuits for
D,/ DME

The diffusion coefficients calculated by the DIA are
larger by a factor 2—4 than those obtained in the TP ap-
proximation. The disagreement between the two methods
is largest for Dr,, breaking the Onsager symmetry in the
DIA result.

e. Onsager relations. Systems that are out of equilib-
rium generally return to the equilibrium state through a
variety of irreversible transport processes. Onsager®>* de-
rived “reciprocal relations™ connecting the corresponding
transport coefficients. These relations reflect, on the mac-
roscopic level, the time reversal invariance of the micro-
scopic equations of motion. For example, a particle density
gradient can cause a heat current, and a temperature gra-
dient can cause a particle current. The transport coeffi-
cients for the two processes are equal. The entropy produc-
tion (due to the irreversible processes occurring in the
system) is a bilinear expression in the fluxes and thermo-
dynamic forces. The calculation of the entropy production
therefore provides a way of finding the proper “conjugate”
irreversible fluxes and thermodynamic forces necessary for
the establishment of the phenomenological equations
whose coefficients obey the Onsager relations.

From Fig. 3, we note that the two off-diagonal coeffi-
cients of our transport matrix, D,r and Dy, are not equal,
ie., the Onsager symmeiry observed in quasilinear and
test-particle results is not present here. This is not under-
stood at present, but has been observed in other studies of
anomalous transport.?”® One difficulty is to find the “cor-
rect” conjugate fluxes and forces. In particular, we have
not been able to find an expression for the entropy produc-
tion in the complex system studied here. It is possible that
Onsager syminetry should not be expected in the case of
anomalous transport, but this remains to be explained.

3. The spectrum modulation

In Sec. II, we have calculated the spectrum modulation
produced by perturbations in density and temperature, and
the result was written as

it (k) 0 1 (k) AL
T — WyKg TlRg) —,
EY i Mo Ty
where I, (w,kg) and Iy(w,ky) are given by (69) and (70).
If we integrate these resulis over the frequency and wave
number, we obtain

(87)

J1d&/(2m)* Y (do/2m) i i Vi, v,
: =1, +1T><— (88)
(VﬁCs/w*)f[dk/(qu) 1(dw/2m){ledr/To|*) o
_J [dk/ (27m)* 1 (deo/2m) | i/ To| YRe{ [ (kop—5)/ (xi—xF) 1(w0,/ — i) [ (1 —7) Ho+7do) } (89)

and
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[ [dk/(2m)*|(der/2m) (| edi/ To| YRe{[ (kop—3)/ (i~ ¥e)](w*/—lw)[(l—T)HH-TAl]}

T=

‘We have plotted the coefficients 7, and I in Fig. 6. We
find that I, and Iy are of the order of 0.05, whereas
(VICS)/w*~44. Therefore, the spectrum modulation is
comparable in magnitude to the density modulation, as
observed experimentally.5!

We should note, however, that from Eq. (66), the co-
efficients I, and I, are real. Therefore, (68) implies a
phase variation (along the radius ) for the spectrum mod-
ulation similar to the one for the density modulation. Ex-
periments, on the other hand, show that the phase of the
spectrum modulation is constant throughout the plasma,
and does not change with the radius, whereas the phase of
the density and temperature do vary with the radius.® This
is not explained by our model. )

IV. SUMMARY AND DISCUSSION

In this work, we have developed a new approach to the
calculation of anomalous transport in tokamak plasmas.
Our method is based on the direct-interaction approxima-

tion, a renormalized theory of turbulence that provides the .

response functions due to infinitesimal perturbations. The
method is particularly well suited to comparisons with per-
turbative transport experiments. Moreover, important
physical properties, such as the ambipolarity of the particle
fluxes, are automatically satisfied.

The theoretical expressions obtained for the transport -

coefficients are based on a specific set of equations describ-
ing the dynamics of the plasma and on the DIA, but do not
require any further approximations. We have not at-
tempted to calculate the fluctuation spectrum from first
principles. Rather, we have expressed our results in terms
of the potential fluctuation spectrum, and we have used
experimental data in all numerical evaluations.

‘We have studied the electron dynamics in detail, but
we have used a simplified treatment of the ion dynamics,
assuming the presence of an anomalous ion viscosity. The
form of this anomalous viscosity was chosen in such a way
that the frequency peak and bandwidth of the fluctuation
spectrum agree with those observed in the Texas Experi-
mental Tokamak (TEXT). It would be interesting to study
what happens with different values of the ion viscosity, in
particular, it would be interesting to try different power
laws for its wave number dependence. According to some
preliminary results, it seems that a high dissipation is
needed at the long wavelengths. A simple power law with
a positive exponent does not provide enough dissipation at
the small wave numbers. It is possible that a more sophis-
ticated model is needed, where different dissipation mech-
anisms prevail for different ranges of wave numbers. Dis-
sipation at small scales can be provided by viscosity effects,
whereas it is conceivable that dissipation at long wave-
lengths could result from geometry effects or shear. It is
also possible that the nonlinear ion damping rate and the
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(90)

f [dk/(27)*1 (dw/2m) { | e/ To |2

—

mode width are not related through each other locally in
wave number space, as was assumed here, but instead
through an integral relation.

We have concentrated on drift-wave turbulence, which
appears to be an important source of anomalous transport
in tokamaks. We have used a simplified slab geometry,
neglecting the magnetic shear and curvature but retaining
the distinction between trapped and circulating electrons.
Magnetic shear and toroidicity have been shown to modify
the stability of drift waves in the linear regime.’®®! How-
ever, there are good reasons to believe that the effect of the
shear in the strong turbulence regime might be less impor-
tant than in the linear regime. Indeed, the decorrelation
time of the mode®” is very small in this regime (Awy~wy),
and is probably smaller than the characteristic time needed
for the mode to be stabilized by shear. Nevertheless, it
would be interesting to prove this particular point by cal-
culating the transport coeflicients, using the method devel-
oped here, with a model including the magnetic shear.

The theoretical expressions for the transport coeffi-
cients have been obtained with few assumptions besides the
chosen plasma model and the DIA theory. However, to
obtain numerical results that can be directly compared
with experiments, we needed to adopt a specific set of tok-
amak parameters. We chose the TEXT tokamak, since a
fairly complete set of data for the fluctuation Spectrum in
the interior of this tokamak was available.

All four diffusion coefficients (relating the fluxes of
particles and heat to perturbations in the density and tem-
perature gradients) were found to have similar radial de-
pendences. Experimentally, the heat conductivity is found
to increase with radius near the edge. Our result does not
follow this prediction. However, all the calculations pre-
sented in this work are valid in the “interior” of the
plasma, rather than near the edge, where other physical
mechanisms might prevail. We found that the contribution
from circulating electrons is very small compared to that of
the trapped electrons. Therefore, the analysis of the prob-
lem could be simplified by considering only the transport
due to the trapped electrons. It was found that all the
diffusion coefficients are positive. The contribution from
the circulating electrons to the off-diagonal diffusion coef-
ficients is negative, whereas the contribution from the
trapped electrons is positive. Since the trapped electrons
dominate, the off-diagonal diffusion coefficients are posi-
tive. It has been suggested that the negative off-diagonal
diffusion coefficients obtained iti calculations involving
only circulating electrons could explain the “inward” con-
vective motion observed in modulation experiments. How-
ever, we showed that the presencé of even a very small
population of trapped electrons is sufficient to guarantee
the positivity of all four diffusion coefficients. We have
argued that this is not in disagreement with an observed
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effective inward convective velocity term in the expression
for the particle flux. The diffusion coefficients are about
two to four times larger than predicted by the test-particle
approximation. The difference is largest for the coefficient
relating the heat flux to a perturbation in the density pro-
file, breaking the Omsager symmetry in the DIA result.
This last result is very important, since Onsager symmetry
is commonly assumed when analyzing experimental data.
Our results show that it is incorrect to make that assump-
tion when studying the anomalous transport matrix.

The modulation of the fluctuation spectrum that re-
sults from a modulation of the density or temperature pro-
files was calculated using the DIA method. This result
cannot be obtained from simpler turbulence theories such
as quasilinear theories. The spectrum modulation was
found to be comparable in magnitude to the density mod-
ulation, as recently observed in TEXT.

It is now commonly accepted that perturbative and
equilibrium fluxes differ if the diffusion coefficients depend
on the plasma parameters, which is the case if they are
produced by turbulence. Recent modulation experiments
in TEXT showed that the perturbed fluxes are linearly
proportional to the density modulation amplitude, but they
are usually larger than the equilibrium fluxes. Because of
the linear relation between the perturbative fluxes and the
density perturbation, the incremental transport can be de-
scribed by a transport matrix. On the other hand, if the
equilibrium fluxes have a complicated dependence on the
gradients, a transport matrix has very little meaning. We
believe that much can be learned from perturbative trans-
port experiments.

The results obtained here were expressed in a form
such that they can be easily compared with experiments.
Since we need experimental data for the frequency and
wave number dependence of the fluctuation spectrum, new
experiments, yielding more detailed results on the turbu-
lence characteristics, would be welcome. In particular, it
would be very useful to obtain the information on both the
fluctuations and the perturbative transport during the same
experiment. This would allow a direct comparison between
theoretical predictions and measured data.
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APPENDIX A: USEFUL INTEGRALS
The trapped-clectron integrals are defined by

3?)2 nd
f1+1(vcﬂv/w)( 2v ) v

where ny, is the equilibrium density of trapped electrons.
Since only v appears in the integrand, the integral can be
rewritten as

(A1)
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1 1 ®© e-v2/2v3
A= @2mh)¥? fo 1+i(vy/@) (v/Vv,) ™

v _3 2\ n
x( o )uldufdn
4 3 e-—'l(rz_%)"

=71-; fo 1+i(v/w)r™

where 7 = y2e/(1+¢) is the fraction of trapped particles.
These integrals can be calculated numerically.
The circulating-electron integrals are defined by

1 So v’ —30] "d
_n—Or:J; l—k” l)" /(D( 2U§ ) v

where ng, is the equilibrium number density of circulating
electrons. These integrals must be calculated by integrating
over the proper range of velocities for the circulating par-
ticles:

7 dr, (A2)

(A3)

g

+ oo Y /=T
Hn oo '—2—(2777) )3/2 f U” f 2'7TUJ_ dl)l

[

e—-(v” -t-ul )/2% vi +Dﬁ _3v§ nd
x I—k" vy /@ 207 v

They can be performed analytically. For n=0, 1 and 2, we

obtain
H 1 @ z 1 w Z @
O_I—Tﬂk“ v, (T VZk" Ue) - (ﬁku Ue) ]’
(A4)
q 1 o (1 o 1 o
l_1—’1' v’ik“ Y, ;Vik“ ve+ (;‘ Vik” Ue)
1 7 1 w @ o \?
2 (7‘ V2k; ve) _Viku ve (v’?k“ ve)
! VA ® AS
—5] (Vikﬂ Ue)] (A3)
and
= 1 w 1 o 1 o \* 1
2_1—1' \/ik“ Vo TVZIC” U, (; Vik“ Ue) _E}

1 o \* /1 @ \? 5 z 1 o
+ (; Vik“ Ue) _(; ‘/Zk“ Ue) +Z (;’ \/Ek” Ue)
w @ 2 g 1) 4
V2R v, [(Vﬁku ve) _5] B [ (kau ve)

) z 5 P @
_(‘/an ve) +Z] (ﬁku ve)]'

In these expressions, Z({) is the plasma dielectric func-
tion. Note that in the limit 7-0, we have
Z[(1/7)(w/V2kj v,)] - —[(1/7) (w/V2Ky v,)]”), and all
the terms involving 1/7 disappear from the expressions for

H,.

(A6)
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APPENDIX B: LINEARIZED ELECTRON EQUATIONS

The linearized electron equations are obtained by let-
ting the right-hand sides in Egs. (20) and (21) go to zero.

The adiabatic part of the fluctuations can be eliminated
by writing

Fo=Foled/To) +H, (B1)

where 4 and %' are the nonadiabatic distribution fluctua-
tions. If we Fourier transform in space and time, the lin-
earized circulating and trapped electron equations then be-
come

— i —ky vy Vi —i(0—y) foledr/ To) — Ci( F1) =0
(B2)

and

— ok —i(o—y) folepr/To) —Ciy(f)=0,  (B3)
where the velocity-dependent diamagnetic frequency o, is
given by

v —3v

o, (v)= Dy +coT—sr—.

2v, (B4)

The velocity-independent diamagnetic frequencies are
given in terms of the density and temperature gradients by

CTQ Vno
P — eho X—o
Wy 2B, k-by . (B5)
and
T CTO VTO n
= Kby X ——=
Oy eBok by Ty NDy» (B6)

where 7= | (VTo/T)/(Vny/ngy) |. The collision operators,
given by Eq. (25), can be written as

~ edr 2 —3v,
C;c=—veﬁ'[ kt+ o Ty XeL 3X§"—2“’
(B7)
and
~ fO e¢k _iveﬁ'(w—'w*)
Gt f G dy=—2° f “Rr 0%
k Roc kEV= Roce TO t 0 —lw+veﬁ'
IOV

- 2 Lv——SUC p BS
T\ 3T W | —io+veg v, (B8)

where we have used Eqgs. (26) and (27), which define ye
and y%. This result can be rewritten as

C‘2~—afo';’f", (B9)
with
o= (os/n0) | — i@ — ") (1~ Ag) —iwnd
+io(1—x5) (1—dg) +io Bk, ], (B10)

where the trapped electrons integrals 4, have been defined
in Appendix A by Eq. (Al). The linearized electron equa-
tions become
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—i(o—k) y )hk+[—z(a) w*)+0]fo(e¢k/To) =0

(B11)
and
( —ia)-l—veg)i‘lvfc-i- [ —i(w—wy)
2 2 e¢k

+veﬁ(1—x§ 3)(% )]fo( T) =0. (B12)
We define the propagators gfc and g% by

(gzcc)_l=—l'(60—k|| TN (B13)

(g;c)_l= — 04V, (B14)
and we will also use the following notations:

bi=—i(o—w,)+o, (B15)

2 =32

b= —i(w— a)*)—i—veﬂv(l e[‘ 3)(51—1—) (B16)

so that the linearized electron equations can be rewritten as

(85) W5+ b fo(edn/ To) =0, (B17)

(&}) ™ K +bl folepr/ To) =O0. (B18)
The system of equations,

Xe_l"'— (J-gkbkf‘ dv+ J-gkbkf‘od") (B19)
and

L 1 cLe v:"-.__ vi
X7=—7p [ J;gkao(T)dv
3v?
+ fgkao(—;z—)dv (B20)

is easily solved for ¥ and y%. More specifically, using the
integrals 4, and H,, defined in Appendix A by Egs. (Al)
and (A3), Xf and X% are solutions of the following system
of equations:

XE[1—7(1—Ao) (1 —Hp) 1+ (3) \2ed; (1 Ho)x
=(1—7) [(1—Hp) + (0/0) (Ho+1H}) ]
+7(@l/0) [ (Ao+nd1) + (1—Ag—nA;) Ho] (B21)
and
XEr[ A+ H (1—40) 1+ [ (1=7) + D)7 (A— 4, H)) 1y F
=1(0}/0) [(4;+ndy) + (1—Ag—nd;) H,]
+(1-7) [(0%/@) (B, +1Hy) —Hy ).

If we use the simplest collision operator (24), the coeffi-
cients X,f‘ and Xfi are given by

(B22)
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L_ %% _ Oy
e[ [8) oo
w’l
+T( )(Ao—{-nAl) (B23)
and
L mll wﬂ
w’l
+»r( )(A1+”7Az) (B24)

APPENDIX C: DERIVATION OF THE TRANSPORT
COEFFICIENTS

Working in Fourier space and using the notations in-
troduced in Appendix B, the nonlinear equations for the
nonadiabatic distribution fluctuations 4 and A}, are

& 'H, +bkfo( ) E Wit k,(e"s")h; v (C1)

+bk.f0( ) z Wk’k k'(e(;i-k )hk Kt (CZ)

where the nonlinear coupling coefficient Wy ;4 is given
by Wy s_w=(cTo/eB)bye (k' Xk) with k=(k,»). The
equations for the forced beat fluctuations are therefore

B b S0/ To)

= — Wiy (e/ To) (i, — i), (C3)
g B + b foledl/ To)

=— Wi, (e/T) (‘;k};;(o_‘gkoz;c); (C4)
Y =noy(ed /To), (C5)
A =ng

=f(77¢(”+f;§”)dv

=no(%:))+ f (B +- D), (C6)

where kg and wy are the wave numbers and frequency of
the perturbations. We have used the separation of scale
| ko| €| k|, so that k—ky=k.

We now solve this linear system for hc(” R, D,
and ¢{. We find

edi! -1
ng ‘%=TX;{ Wkko( ) f [¢k(gkhko+gkhko)
— i, (i + gk 1dv, (C7)
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ht’t(i)_gc,tbc,tf W ko f[¢ (
" W&k +eifl)

— iy (Bii+ gl 1av
6 W 7 | Bl o). (c8)

The anomalous fluxes, in the DIA framework, are
therefore

pc,m <~(1) prt +7E;’;c.:(1)>
= ——z(ce;;()) Z kXh, < (ﬁ)}}zt"_ (%’%);“%t(l) )
=—i(55) Siw ( j”)

+(e§f“) ‘Wkko( )<¢kfzk° D). (©

Before we develop the calculation further, let us notice
that the test-particle result, obtained by letting 5" go to
zero in the preceding formula, is given by

- ) P

X Wi (BEEE (B — Bi i) (C10)

Using the lowest-order approximation for h and ¢k0, we
can express the fluxes in terms of the sources § as

)

(

B e
—lwg <
Cit)

Ty
Note that the fluxes of trapped particles and circulating
particles are completely decoupled in this approximation.
The fluxes obtained with the DIA method can now be
written as

5250 (7)
gk§”+gk§‘ )

A

(cTo
I‘C-I'vi;= —l('e_B) % kxboWkkogk

—_ IC:)Q

1
X Wty 3L (

[<¢kh '*>+(T) SO (bl |- (C12)

We see here that the fluxes additional to those obtained in
the quasilinear approximation couple the three species of
particles through y,—yZ, which is closely related to the
plasma dlelectnc The flux of electrons is obtained by in-
tegrating I'S%, over the velocities,
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cT
Tpa= J(FDIA+FDIA)dV rQL“ikO( 0)

XE’kXbDI2XI —r (fgig%gkgt )

— 1l

e¢k

x (|5

Ty

) (C13)
with
Tou= [ (Bt iy
_.,ko( ) 2|kXb0|2(f€k§C;L£kgdv)
([

Ty
and where we have used the ion equation (22) and the
quasineutrality equation (23) to write

>, (C14)

¢ .
() @ ) oo [
(C15)
The flux of heat is obtained from the second velocity mo-
ment of T3¢ .,

1 ¥ —302
Ty Qpra= f (I% Sa-+Tha) _vz“‘ = dv

— ko( )Z|k><b|2 L
_TOqQL 0 _XT

X( f gk§c+mg0tk§t dV) [ <¢kf (hG-+ )%
sz;’gvz dv> (n T ) J- (83b7+8id%)

e¢k
T,

) ] (Cle6)

Here, we still need to calculate the correlations,

v —3v
Xfo—2r‘d <

~ ~x v2—3v3
<¢kf (hk +hk)Tdv>.

These correlations can, in principle, be deduced from the
spectral DIA equations. However, we will instead use a
simpler procedure and model the velocity dependence of
the distribution fluctuations 4} and A}. If we assume that
the velocity dependence of 4} and 4 is the same as the
velocity dependence of the linearized values of A% and A},
i.e., that the correlations have the form

(G2 (v))y = — 8" BE™ Fol (ed}/To) b1,

with 1, independent of velocity; then the quasineutrality
relation determines {(y¥}¢,), and we find

(C17)
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*_1
(Gt = <|¢k|2>”‘ s

Therefore, eq. (C17) simplifies to

2

o (o V30,
(8] @ity 5 av)
e

. L¥ Xt @ -~
=NoXT xf*-l (To éx ) (C18)
so that
1 1 (<0 Z b ? 1
T o= 9o v
f g§c+gk§t av X;k—l ¥ L
X —iwy XeL*—IXT Xr
e(;k 2 '
><< = > (C19)
with

1 V32 cTo
T, 9= (FQL+I‘QL)““‘_2_dV ko| —%

giE +gif v2~3v;

2

X % |k Xbo| (f iy 2 d")
d

e
If the density profile is perturbed, the fluxes of particles
and heat are

ebi”
T,

) : (C20)

Ay (T
LoL=rko 0( O) Elkxbolz

¢k

X f (8x+8i).fo dV< T,

>, (C21)

rDIA_ikO (c 0) 2 |kXb0|2( _'KL')

Xi—Xe
¢k :
f(gﬁgi)foa’v( - ) (C22)
1 A
ﬁQQL=%;§( ) Z IkXb0|2
v d by ? 23
X (gk-i-gk)fo'Tz— V( T, >, (C23)
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2 — 302 1 (xF-1 .,
8 P2 dv_Xi—Xf ()(f*—lxr _XT)
e¢k
x [ @irensoar| (|7 ). (C24)

where we have used Eq. (18) for & and °. If the temper-
ature profile is perturbed, the fluxes of particles and heat
are

7,
ToL=ik, T‘; ( ) 2 [kXby|?

€¢k
T,

U2
(gk+gk)fo—2-2—d ( >, (C25)

Ty (eT
PDIAzlkOTZ (’ejo) % lkXbo|2f (gi+g%)

Dz 302 Xi —Xe e$k2
Xfo—zr—dv(l '—Xer)< ?o >, (C26)

1 To CTO
— gy =iy 2 Xy 2
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2
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Ty

(C27)
1 T, T
T, — dpia=%g To (C 0) > |k Xby|? f(gk+gk)

vt — 31)2)2
v

20

1 x, -1
- Xe XT _'XT)

f (g:+81) fo __g_ dv] (

Xfo(

¢k

T, >, (C28)

where we have used Eq. (19) for £° and Z*.

APPENDIX D: INCREMENTAL VERSUS EQUILIBRIUM
FLUXES

The anomalous transport has been conventionally
studied analytically by calculating total fluxes across mag-
netic surfaces. However, many experiments measure the
transport of perturbations, such as heat pulses. It has been
observed experimentally as well as shown analytically that
incremental fluxes resulting from small perturbations are
quite different from equilibrium fluxes.

Let us assume that the nonlinear equilibrium electron
flux T can be written under the following very general
form:
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=—D,Vnyg— Dy VT+U,ne+UrT, (D1)
where ny, T, Vg, and VT are the equilibrium values of
the density, temperature, and their gradients, D, and Dy
are diffusion coefficients, and U, and Uy are convection
velocities. If the flux is produced by the turbulence, the
parameters D,, Dy, U,, and Uy are functions of the equi-
librinm plasma parameters. Now, let us perturb the plasma
with an external infinitesimal source. The nonlinear flux T'
will be perturbed as well, and the linearized, or incremental
flux can be written as

5= () snt(ZE svna (8 o7
“(an)o ”+(av) ”*‘(ar)

or s
(a VT) VT - (D2)

where 8n, 8 Vn, 6T, and 8 VT are the perturbations of the
equilibrium plasma density, temperature, and their gradi-
ents, and the subscript “0” means that the quantities in
parentheses must be evaluated at the equilibrium. Those
derivatives can be evaluated from Eq. (D1) and written as

ar aD,\ o (8Dr\ o
(an) - _(672) n°~( an) 0
0 0 o]

au, U\
+(G) ot () 7o)
1] 0
T aD,\ o _ (3Dr
(&) |- (&), ™ (57), ™™
] 4] 0
au, ury
+(57) ot () oo
ar oD\ o (3Dr\
(aVn) ‘[“(aw) ”0“(aVn) VT
1] Q 0
au, auy
+(a\7n)o”° (av ) To— Dl
ar oD\ o (3Dr\
(avr) “[‘(avr) ”°“(avr) o
O 0 0
au, Ury
(avr) +(avr)0 o—Pr|.

Replacing these results in Eq. (D2), we can rewrite the
linearized incremental flux as

>

8T=— D8 Vn— D778 VT + U™ 8n+UP™ 8T,
(D3)

with
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N aD,
Dm D,,—I—(av”) Vn0+(avT) VTO

Ju, gy
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4D, D
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0

au, dUy
B T,
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: ap, 3Dy
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Comparing the linearized incremental flux, we see that
the incremental transport coefficients are very different
from the equilibrium ones. The only case where these two
sets of coefficients are identical is when the equilibrium flux
is linear in the plasma parameters, which is not the case
when this flux is produced by the turbulence.
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