Paper published in a book (Scientific congresses and symposiums)
Global analysis of a continuous-time flow whith computes time-optimal switchings
Grognard, F.; Sepulchre, Rodolphe
2001In Proceedings of the 40th IEEE Conference on Decision and Control
Peer reviewed
 

Files


Full Text
GS01.pdf
Author preprint (6.87 MB)
Download

© IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.


All documents in ORBi are protected by a user license.

Send to



Details



Abstract :
[en] The minimum-time bounded control of linear systems is generically bang-bang and the number of switchings does not exceed the dimension of the system if the eigenvalues of the system matrix are real. This paper proposes a synthesis method for such problems based on dynamical systems that "compute" the optimal sequence of switching times.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Grognard, F.;  Université Catholique de Louvain - UCL > Center for Systems Engineering and Applied Mechanics
Sepulchre, Rodolphe ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Global analysis of a continuous-time flow whith computes time-optimal switchings
Publication date :
December 2001
Event name :
40th IEEE Conference on Decision and Control
Event place :
Orlando, United States - Florida
Event date :
du 4 au 7 décembre 2001
By request :
Yes
Audience :
International
Main work title :
Proceedings of the 40th IEEE Conference on Decision and Control
Pages :
3826-3831
Peer reviewed :
Peer reviewed
Available on ORBi :
since 07 December 2010

Statistics


Number of views
43 (0 by ULiège)
Number of downloads
75 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi