Contribution to collective works (Parts of books)
Optimal Data Fitting on Lie Groups: a Coset Approach
Lageman, Christian; Sepulchre, Rodolphe
2010In Diehl, M. (Ed.) Recent Advances in Optimization and its Applications in Engineering
 

Files


Full Text
LS10.pdf
Publisher postprint (1.99 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Abstract :
[en] This work considers the problem of fitting data on a Lie group by a coset of a compact subgroup. This problem can be seen as an extension of the problem of fitting affine subspaces in Rn to data which can be solved using principal component analysis. We show how the fitting problem can be reduced for biinvariant distances to a generalized mean calculation on an homogeneous space. For biinvariant Riemannian distances we provide an algorithm based on the Karcher mean gradient algorithm. We illustrate our approach by some examples on SO(n).
Disciplines :
Electrical & electronics engineering
Author, co-author :
Lageman, Christian;  Universität Würzburg > Institut für Mathematik
Sepulchre, Rodolphe ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Optimal Data Fitting on Lie Groups: a Coset Approach
Publication date :
2010
Main work title :
Recent Advances in Optimization and its Applications in Engineering
Editor :
Diehl, M.
Publisher :
Springer-Verlag
Pages :
173-182
Available on ORBi :
since 06 December 2010

Statistics


Number of views
51 (1 by ULiège)
Number of downloads
312 (0 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi