[en] The structures of the, class C beta-lactamase from Enterobacter cloacae 908R alone and in complex with a baronic acid transition-state analogue were determined by X-ray crystallography at 2.1 and 2.3 Angstrom, respectively. The structure of the enzyme resembles those of other class C beta-lactamases. The structure of the. complex with the transition-state analogue, iodo-acetamido-phenyl boronic acid, shows that the inhibitor is covalently, bound to the active-site serine (Ser64). Binding of the inhibitor within the active site is compared with previously determined structures of complexes with other class C enzymes. The structure of the boronic acid adduct indicates ways to improve the affinity of this class of inhibitors. This structure of 908R class C beta-lactamase in complex with a transitionstate analogue provides further insights into the mechanism of action of these hydrolases.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Wouters, J.
Fonze, E.
Vermeire, M.
Frère, Jean-Marie ; Université de Liège - ULiège > Département des sciences de la vie > Département des sciences de la vie
Charlier, Paulette ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Language :
English
Title :
Crystal structure of Enterobacter cloacae 908R class C beta-lactamase bound to iodo-acetamido-phenyl boronic acid, a transition-state analogue
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Monnaie A., Dubus A. and Frere J.-M. (1994) The role of lysine-67 in a class C β-lactamase is mainly electrostatic. Biochem. J. 302: 1-4
Dubus A., Normark S., Kania M. and Page M. G. P. (1994) The role of tyrosine 150 in catalysis of β-lactam hydrolysis by AmpC β-lactamase from Escherichia coli investigated by site-directed mutagenesis. Biochemistry 33: 8577-8586
Dubus A., Normark S., Kania M. and Page M. G. P (1995) Role of asparagine 152 in catalysis of β-lactam hydrolysis by Escherichia coli AmpC β-lactamase studied by site-directed mutagenesis. Biochemistry 34: 7757-7764
Oefner C., D'Arcy A., Daly J. J., Gubernator K., Charnas R. L., Heinze I. et al. (1990) Refined crystal structure of a of β-lactamase from Citrobacter freundii indicates a mechanism for β-lactam hydrolysis. Nature 343: 284-288
Usher K. C., Blaszczak L. C., Weston G. S., Shoichet B. K. and Remington S. J. (1998) Three-dimensional structure of AmpC β-lactamase from Escherichia coli bound to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design. Biochemistry 37: 16082-16092
Lobkovsky E., Moews P. C., Liu H., Zhao H., Frere J.-M. and Knox J. R. (1993) Evolution of an enzyme activity: crystallographic structure at 2-Å resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. Proc. Natl. Acad. Sci. USA 90: 11257-11261
Patera A., Blaszczak L. C., Stoichet B. (2000) Crystal structures of substrate and inhibitor complexes with AmpC β-lactamase: possible implications for substrate-assisted catalysis. J. Am. Chem. Soc. 122: 10504-10512
Powers R. A., Caselli E., Focia P. J., Prati F. and Shoichet B. K. (2001) Structures of ceftazidime and its transition-state analogue in complex with AmpC β-lactamase: implications for resistance mutations and inhibitor design. Biochemistry 40: 9207-9214
Beadle B. M. and Shoichet B. K. (2002) Structural basis for imipenem inhibition of class C β-lactamases. Antimicrob. Agents Chemother. 46: 3978-3980
Crichlow G. V., Nukaga M., Doppalapudi V. R., Buynak J. D. and Knox J. R. (2001) Inhibition of class C β-lactamases: structure of a reaction intermediate with a cephem sulfone. Biochemistry 40: 6233-6239
Beadle B. M., Trehan I., Focia P. J. and Shoichet B. K. (2002) Structural milestones in the reaction pathway of an amide hydrolase: substrate, acyl, and product complexes of cephalothin withAmpC β-lactamase. Structure 10: 412-424
Shoichet B. K., McGovern S. L., Wei B. and Irwin J. J. (2002) Lead discovery using molecular docking. Curr. Opin. Chem. Biol. 6: 439-446
Powers R. and Stoichet B. K. (2002) Structure-based approach for binding site identification on AmpC β-lactamase. J. Med. Chem. 45: 3222-3234
Caselli E., Powers R. A., Blasczcak L. C., Wu C. Y. E., Prati F. and Shoichet B. K. (2001) Energetic, structural, and antimicrobial analyses of β-lactam side chain recognition by β-lactamases. Chem. Biol. 8: 17-31
Tondi D., Powers R. A., Caselli E., Negri M.-C., Blázquez J., Costi M. P. et al. (2001) Structure-based design and in-parallel synthesis of inhibitors of AmpC β-lactamase. Chem. Biol. 8: 593-610
Powers R. A., Blazquez J., Weston G. S., Morosini M. I., Baquero F. and Shoichet B. K. (1999) The complexed structure and antimicrobial activity of a non-beta-lactam inhibitor of AmpC beta-lactamase. Protein Sci. 8: 2330-2337
Lobkovsky E., Billings E. M., Moews P. C., Rahil J., Pratt R. F. and Knox J. R. (1994) Crystallographic structure of a phosphonate derivative of the Enterobacter cloacae P99 cephalosporinase: mechanistic interpretation of a β-lactamase transition-state analog. Biochemistry 33: 6762-6772
Powers R. A., Morandi F. and Shoichet B. K. (2002) Structure-based discovery of a novel, noncovalent inhibitor of Amp C β-lactamase. Structure 10: 1013-1023
Wouters J., Charlier P., Monnaie D., Frère J.-M. and Fonzé E. (2001) Expression, purification, crystallization and preliminary X-ray analysis of the native class C β-lactamase from Enterobacter cloacae 908R and two mutants. Acta Crystallogr. D57: 162-164
Howard A. J., Gilliland G. L., Finzel B. C., Poulos T., Ohlendorf D. O. and Salemme F. R. (1987) The use of an imaging proportional counter in macromolecular crystallography. J. Appl. Crystallogr. 20: 383-387
Navaza J. (1994) AMoRe: an automated package for molecular replacement. Acta Crystallogr. AS0: 157-163
Sheldrick G. M. and Schneider T. R. (1997) SHELXL: high resolution refinement. Methods Enzymol. 277: 319-343
Roussel A. and Cambillau C. (1992) Turbo-Frodo. Biographics, AFMB, Marseille, France
Knox, J. R., Moews P. C. and Frere J.-M. (1996) Molecular evolution of bacterial beta-lactam resistance. Chem. Biol. 3: 937-947
Larsen N. A., Turner J. M., Stevens J., Rosser S. J., Basran A., Lerner R. A. et al. (2002) Crystal structure of a bacterial cocaine esterase. Nat. Struct. Biol. 9: 17-21
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.