[en] Aim Size and shape of the mandible are investigated across the latitudinal range of the European wood mouse ( Apodemus sylvaticus), in order to address the relative importance of genetic structure, insularity, and geographical gradient in patterning morphological variation. Results are compared with those on two Asiatic species of wood mice, A. argenteus and A. speciosus. Location The European wood mouse is sampled by a set of trapping localities including both, islands and mainland populations, as well as the four genetic groups identified in previous studies. The localities cover a latitudinal gradient from 55 degreesN to 36 degreesN. Methods Different Fourier methods are applied to the outlines of mandibles and their results compared in the case of A. sylvaticus. All provide similar results and allow a quantification of the size and shape variations across the geographical range of the European wood mouse. Using the method allowing for the best reduction of the informative data set, a comparison of the European wood mouse with the two Asiatic species was performed. Results Within the European wood mouse A. sylvaticus, a strong latitudinal gradient in mandible shape overrides the influence of insularity and genetic structure. Yet, random morphological divergence in insular conditions can be identified as a secondary process of shape differentiation. Size displays no obvious pattern of variation, neither with insularity or latitude. A comparison with two other species of wood mice suggests that a similar latitudinal gradient in mandible shape exists in different species, mandibles being flatter in the north and wider in the south. Main conclusion The latitudinal gradient in mandible shape observed in the three species of wood mice is interpreted as an intraspecific adaptive response to gradual changes in feeding behaviour.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Angerbjörn, A. (1986) Gigantism in island populations of wood mice (Apodemus) in Europe. Oikos, 47, 47-56.
Atchley, W.R., Cowley, D.E., Vogl, C. & McLellan, T. (1992) Evolutionary divergence, shape change, and genetic correlation structure in the rodent mandible. Systematic Biology, 41, 196-221.
Attuquayefio, D.K., Gorman, M.L. & Wolton, R.J. (1986) Home range size in the Wood mouse Apodemus sylvaticus: habitat, sex and seasonal differences. Journal of Zoology, London, 210, 45-53.
Auffray, J.-C., Alibert, P., Latieule, C. & Dod, B. (1996) Relative warp analysis of skull shape across the hybrid zone of the house mouse (Mus musculus) in Denmark. Journal of Zoology, London, 240, 441-455.
Bergmann, C. (1847) Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien, 3, 595-708.
Berry, R.J. (1969) History in the evolution of Apodemus sylvaticus (Mammalia) at one edge of its range. Journal of Zoology, London, 159, 311-328.
Berry, R.J. (1973) Chance and change in British Long-tailed field mice (Apodemus sylvaticus). Journal of Zoology, London, 170, 351-366.
Boursot, P., Auffray, J.-C., Britton-Davidian, J. & Bonhomme, F. (1993) The evolution of house mice. Annual Review of Ecology and Systematics, 24, 119-152.
Butet, A. (1986) Régime alimentaire d'une population de mulots sylvestres (Apodemus sylvaticus L., 1758), dans une lande xéro-mé sophile en cours de recolonisation végétale. Bulletin d'Ecologie, 17, 21-37.
Butet, A. (1990) Teneur azotée des ressources et choix trophiques du mulot sylvestre (Apodemus sylvaticus) dans un système oligotrophe. Canadian Journal of Zoology, 68, 26-31.
Butet, A. (1994) Nutritional conditions and annual fluctuations in Apodemus sylvaticus population. Russian Journal of Ecology, 25, 111-119.
Chapelle, G. & Peck, L.S. (1999) Polar gigantism dictated by oxygen availability. Nature, 399, 114-115.
Cheverud, J.M., Routman, E.J. & Irschick, D.J. (1997) Pleiotropic effects of individual gene loci on mandibular morphology. Evolution, 51, 2006-2016.
Corti, M. & Rohlf, F.J. (2001) Chromosomal speciation and phenotypic evolution in the house mouse. Biological Journal of the Linnean Society, 73, 99-112.
Crampton, J.S. (1995) Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia, 28, 179-186.
Duarte, L.C., Monteiro, L.R., Von Zuben, F.J. & Dos Reis, S.F. (2000) Variation in mandible shape in Thrichomys apereoides (Mammalia: Rodentia): Geometric analysis of a complex morphological structure. Systematic Biology, 49, 563-578.
Fadda, C. & Corti, M. (2001) Three-dimensional geometric morphometrics of Arvicanthis: implications for systematics and taxonomy. Journal of Zoological Systematics and Evolutionary Research, 39, 235-245.
Ferris, S.D., Sage, R.D., Huand, C.M., Nielsen, J.T., Ritte, U. & Wilson, A.C. (1983a) Flow of mitochondrial DNA accros a species boundary. Proceedings of the National Academy of Sciences, USA, 80, 2290-2294.
Ferris, S.D., Sage, R.D., Prager, E.M., Ritte, U. & Wilson, A.C. (1983b) Mitochondrial DNA evolution in mice. Genetics, 105, 672-681.
Foster, J.B. (1964) The evolution of mammals on islands. Nature, 202, 234-235.
Kesner, M.H. (1980) Functional morphology of the masticatory musculature of the rodent subfamily Microtinae. Journal of Morphology, 165, 205-222.
Klingenberg, C.P. & Leamy, L.J. (2001) Quantitative genetics of geometric shape in the mouse mandible. Evolution, 55, 2342-2352.
Klingenberg, C.P., Leamy, L.J., Routman, E.J. & Cheverud, J.M. (2001) Genetic architecture of mandible shape in mice: effects of quantitative trait loci analyzed by geometric morphometrics. Genetics, 157, 785-802.
Kuhl, F.P. & Giardina, C.R. (1982) Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing, 18, 259-278.
Libois, R., Michaux, J.R., Ramalhinho, M.G., Maurois, C. & Sarà, M. (2001) On the origin and systematics of the northern African wood mouse (Apodemus 'sylvaticus) populations: a comparative study of mtDNA restriction patterns. Canadian Journal of Zoology, 79, 1503-1511.
Lomolino, M.V. (1985) Body size of mammals on islands: the island rule reexamined. The American Naturalist, 125, 310-316.
Manly, B.F.J. (1994) Multivariate statistical methods. A primer, 2nd edn. Chapman & Hall/CRC, London.
Marcus, L.F. (1993). Some aspects of multivariate statistics for morphometrics. Contributions to morphometrics (ed. by L.F. Marcus, E. Bello & A. Garcia-Valdecasas), pp. 95-130. Museo Nacional de Ciencas Naturales, Madrid.
Marshall, J.T. (1988). Family muridae. Rats and mice. Mammals of Thailand (eds M.D. Boonsong Lekagul, A. Jeffrey & B.A. McNeely), pp. 397-487. Association for the Conservation of Wildlife, Saha Karn Bhaet Co., Bangkok.
Mayr, E. (1942) Systematics and the origin of species. Columbia University Press, New York.
Mezey, J.G., Cheverud, J.M. & agner, G.P. (2000) Is the genotype-phenotype map modular?: a statistical approach using mouse quantitative trait loci data. Genetics, 156, 305-311.
Michaux, J. (1978). Les muridés actuels et fossiles. Aspects modernes des recherches sur l'évolution, Vol. 4 (ed. by J. Bons), pp. 133-143. Ecole Pratiques des Hautes Etudes, Montpellier.
Michaux, J.R., Filipucci, M.-G., Libois, R., Fons, R. & Matagnes, R.F. (1996a) Biogeography and taxonomy of Apodemus sylvaticus (the woodmouse) in the Tyrrhenian region: enzymatic variations and mithochondrial DNA restriction pattern analysis. Heredity, 76, 267-277.
Michaux, J.R., Libois, R. & Fons, R. (1996b) Différenciation génétique et morphologique du mulot, Apodemus sylvaticus, dans le bassin méditerranéen occidental. Vie et Milieu, 46, 193-203.
Michaux, J.R., Libois, R., Ramalhinho, M.G. & Maurois, C. (1998a) On the mtDNA restriction patterns variation of the Iberian wood mouse (Apodemus sylvaticus). Comparison with other west mediterranean populations. Hereditas, 129, 187-194.
Michaux, J.R., Sara, M., Libois, R. & Matagne, R. (1998b) Is the woodmouse (Apodemus sylvaticus) of Sicily a distinct species? Belgian Journal of Zoology, 128, 211-214.
Michaux, J.R., Chevret, P., Filipucci, M.-G. & Macholan, M. (2002a) Phylogeny of the genus Apodemus with a special emphasis on the subgenus Sylvaemus using the nuclear IRBP gene and two mitochondrial markers: cytochrome b and 12S rRNA. Molecular Phylogenetics and Evolution, 23, 123-136.
Michaux, J.R., Goüy de Bellocq, J., Sara, M. & Morand, S. (2002b) Body size increase in rodent populations: a role for predators. Global Ecology and Biogeography, 11, 427-436.
Michaux, J.R., Magnanou, E., Paradis, E., Niebrding, C. & Libois, R. (2003) Mitochondrial phylogeography of the woodmouse (Apodemus sylvaticus) in the Western Palearctic region. Molecular Ecology, 12, 685-697.
Millien-Parra, V. (2000) Species differentiation among muroid rodents on the basis of their lower incisor size and shape: ecological and taxonomical implications. Mammalia, 64, 221-239.
Montgomery, S.S.J. & Montgomery, W.I. (1990) Intrapopulation variation in the diet of the wood mouse Apodemus sylvaticus. Journal of Zoology, London, 222, 641-651.
Montgomery, W.I., Wilson, W.L., Hamilton, R. & McCartney, P. (1991) Dispersion in the wood mouse, Apodemus sylvaticus: variable resources in time and space. Journal of Animal Ecology, 60, 179-192.
Murbach, H. (1979) Zur Kenntnis von Inselpopulationen der Waldmaus Apodemus sylvaticus (Linnaeus, 1758). Zeitschrift für zoologische Systematik und Evolutionsforschung, 17, 116-139.
Randolph, S.E. (1977) Changing spatial relationships in a population of Apodemus sylvaticus with the onset of breeding. Journal of Animal Ecology, 46, 653-676.
Ray, C. (1960) The application of Bergmann's and Alien's rules to the poikilotherms. Journal of Morphology, 106, 85-108.
Renaud, S. (1999) Size and shape variability in relation to species differences and climatic gradients in the African rodent Oenomys. Journal of Biogeography, 26, 857-865.
Renaud, S. & Millien, V. (2001) Intra- and interspecific morphological variation in the field mouse species Apodemus argenteus and A. speciosus in the Japanese archipelago: the role of insular isolation and biogeographic gradients. Bioloshy; gical Journal of the Linnean Society, 74, 557-569.
Renaud, S., Michaux, J., Jaeger, J.-J. & Auffray, J.-C. (1996) Fourier analysis applied to Stephanomys (Rodentia, Muridae) molars: nonprogressive evolutionary pattern in a gradual lineage. Paleobiology, 22, 255-265.
Rogers, L.M. & Gorman, M.L. (1995) The diet of the wood mouse Apodemus sylvaticus on set-aside land. Journal of Zoology, London, 235, 77-83.
Rohlf, F.J. & Archie, J.W. (1984) A comparison of Fourier methods for the description of wing shape in Mosquitoes (Diptera: Culicidae). Systematic Zoology, 33, 302-317.
Satoh, K. (1997) Comparative functional morphology of mandibular forward movement during mastication of two murid rodents, Apodemus speciosus (Murinae) and Clethrionomys rufocanus (Arvicolinae). Journal of Morphology, 231, 131-142.
St Girons, M.C. (1966) Etude du genre Apodemus en France. Mammalia, 30, 547-600.
Taylor, P.J. & Kumirai, A. (2001). Craniometric reltionships between the Southern African Vlei rat, Otomys irroratus (Rodentia, Muridae, Otomyinae) and allied species from North of the Zambezi River. African small mammals (ed. by C. Denys, et al), pp. 161-181. IRD Editions, Paris.
Verneau, O., Catzeflis, F. & Furano, A.V. (1998) Determining and dating recent rodent speciation events by using L1 (LINE-1) retrotransposons. Proceedings of the National Academy of Sciences, USA, 95, 11284-11289.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.