Adachi, H, Ohta, T. and Matsuzawa H. (1991). Site-directed mutants, at position 166, of RTEM-1 i-lactamase that form a stable acyl-enzyme intermediate with penicillin. Journal of Biological Chemistry 266, 3186-3191.
Adam, M., Damblon, C, Plaitin, B., Christiaens, L. and Frere, J.M. (1990). Chromogenic depsipeptide substrates for lactamases and penicillin-sensitive DD-peptidases. Biochemical Journal 270, 525-529.
Ambler, R.P., Coulson, A.F., Frere, J.M., Ghuysen, J.M., Jaurin, B., Joris, B., Levesque, R., Tiraby, G. and Waley, S.G. (1991). A standard numbering scheme for the class A beta-lactamases. Biochemical Journal 276, 269-272.
Amicosante, G., Franceschini, N., Segatore, B., Oratore, A., Fattorini, L., Orefici, G., van Beeumen, J. and Frere, J.M. (1990). Characterization of a P-lactamase produced in Mycobacterium fortuitum D316. Biochemical Journal 271, 729-734.
Belaaouaj, A. (1992). Beta-lactamases TEM-1: emergence clinique de mutants resistants aux inhibtteurs de beta-lactamases, PhD Thesis, Universite de Paris 7.
Brady, L, Brzgzowski A., Derewenda, Z., Dodson, E., Dodson, G., Tolley, S., Turkenburg, J, Christiansen, L., Huge-Jensen, B., Norskov, L. and Menge, V. (1990). A serine protease triad forms the catalytic centre of a triacy lglycerol lipase. Nature 343,767-770.
Brannigan, J., Matagne, A., Jacob, F., Damblon, C, Joris, B., Klein, D., Spratt B.G. and Frere, J.M. (1991). The mutation Lys234His yields a class A P-lactamase with a novel pH-dependence. Biochemical Journal 278, 673-678.
Bush, K. (1989a). Characterization of P-iactamases. Antimicrobial Agents and Chemotherapy 33, 259-263.
BUSH, K. (1989b). Excitement in the beta-iactamase area. Journal of Antimicrobial Chemotherapy 24, 831-836.
Cartwright, S.J. and Waley, S.G. (1987). Cryoenzymology of beta-lactamases. Biochemistry 26, 5329-5337.
Christensen, H., Martin, M.T. and Waley, S.G. (1990). p-lactamases as fully efficient enzymes. Determination of all the rate constants in the acyl-enzyme mechanism. Biochemical Journal 266, 853-861.
Collatz, E., Labia, R. and gutmann, L. (1990). Molecular evolution of ubiquitous beta-lactamases towards extended-spectrum enzymes active against newer beta-lactam antibiotics. Molecular Microbiology 4, 1615-1620.
Couture, F., Lachapelle, J. and Levesque, R.C. (1992). Phylogeny of LCR-I and oxa-5 with class a and class D p-lactamases. Molecular Microbiology 6, 1693-1705.
Coyette, J, Nguyen-Disteche, M., Lamotte-Brasseur, J., Joris, B., Fonze, E. and Frbre, J.M. (1994). Molecular adaptations in resistance to penicillins and other B-Jactam antibiotics. Advances in Comparative and Environmental Physiology 20, 233-267.
Datz, M., Joris, B., Azab, E. A.M., Galleni, M., van Beeumen, J., Frere, J.M. and Martin, H.H. (1994). A common system controls the induction of very different genes: the class A p-lactamase of Proteus vulgaris and the enterobacterial class C P-lactamase. European Journal of Biochemistry 226, 149-157.
Dehottay, P., Dusart, J, DeMeester, F., Joris, B., van Beeumen, J., Erpicum, T., Frere, J.M. and Ghuysen, J.M. (1987). Nucleotide sequence of the gene encoding the Strepto-myces albus G p-lactamase precursor. European Journal of Biochemistry 166, 345-350.
Delaire, M., Lenfant, F., Labia, R. and Masson, J.M. (1991). Site-directed mutagenesis on TEM-i beta-iactamase: role of Glul66 in catalysis and substrate binding. Protein Engineering 4, 805-810.
Delaire, M., Labia, R., Samama, J.P. and Masson, J.M. (1992). Site-directed mutagenesis at the active site of Escherichia coli TEM-1 p-lactamase. Suicide inhibitor-resistant mutants reveal the role of arginine 244 and methionine 69 in catalysis. Journal of Biological Chemistry 267, 20600-20606.
Dideberg, o., Charlier, P., Wery, J.P., Dehottay, P.H., Dusart, J., Erpicum, T., Frere, J.M. and Ghuysen, J.M. (1987). The crystal structure of the p-lactamase of Streptomyces albus G at 0.3 nm resolution. Biochemical Journal 245, 911-913.
Dubus, A., Monnaie, D., Jacobs, C, Normark, S. and Frere, J.M. (1993). A dramatic change in the rate-limiting step of 3-lactam hydrolysis results from the substitution of the active-site serine residue by a cysteine in the class C P-factamase of Enterobacter cloacae 908R. Biochemical Journal 292, 537-543.
Dubus, A., Wilkin, J.M., Raquet, X., Normark, S. and Frere, J.M. (1994a). Catalytic mechanism of active-site serine p-lactamases: role of the conserved hydroxy group of the KT(S)G triad. Biochemical Journal 301, 485-494.
Dubus, A., Normark, S., Kania, M. and Page, M.G.P. (1994b). The role of tyrosine 150 in catalysis of P-lactam hydrolysis by AmpC P-lactamase from Escherichia coli investigated by site-directed mutagenesis. Biochemistry, 33, 8577-8586.
Ellerby, L.M., Escobar, W. A., Fink, A.L., Mitchinson, C. and Wells, J.A. (1990). The role of lysine-234 in beta-lactamase catalysis probed by site-directed mutagenesis. Biochemistry 29, 5797-5806.
Escobar, W.A., Tan, A.K. and Fink, A.L. (1991). Site-directed mutagenesis of beta-lactamase leading to accumulation of a catalytic intermediate. Biochemistry 30, 10783-10787.
Escobar, W.A., Tan, A.K., Lewis, E.R. and Fink, A.L. (1994). Site-directed mutagenesis of glutamate-166 in P-lactamase leads to a branched pathway mechanism. Biochemistry 33, 7619-7626.
Felici, A., Amicosante, G., Oratore, A., Strom, R., Ledent, P., Joris, B. and Frere, J.M. (1993). An overview of the kinetic parameters of class B p-lactamases. Biochemical Journal 291, 151-155.
Fersht, A.R., Blow, D.M. and Fastrez, J. (1973). Leaving group specificity in the chymotrypsin catalysed hydrolysis of peptides. A stereochemical interpretation. Biochemistry 12, 2035-2041.
Fonze, E., Charlier, P., To th, Y., Vermeire, M., Raquet, X. and Dubus, A. and Frere, J.M. TEM-l beta-lactamase structure solved by moleular replacement and refined structure of the S235A mutant. Acta Chrystallographica, Section D, in press.
Frere, J.M. and Joris, B. (1985). Penicillin-sensitive enzymes in peptidoglycan biosynthesis. CRC Critical Reviews in Microbiology 11, 299-396.
Frere, J.M., Joris, B, Crine, M. and Martin, H.H. (1989). Quantitative relationship between sensitivity to beta-lactam antibiotics and beta-lactamase production in Gram-negative bacteria: II. Non-steady-state treatment and progress curves. Biochemical Pharmacology 38, 1427-1433.
Frere, J.M., Nguyen-Disteche, M., Coyette, J. and Joris, B. (1992). Mode of action: interaction with the penicillin binding proteins. In The Chemistry of Beta-Lactams (M.I. Page, Ed.), pp. 148-197. Chapman & Hali, London.
Galleni, M., Amicosante, G. and frere, J.M. (1988). A survey of the kinetic parameters of class C p-lactamases. II Cephalosporins and other p-Iactam compounds. Biochemical Journal 255, 123-129.
Ghuysen, J.M. (1991). Serine P-lactamases and penicillin-binding proteins. Annual Review of Microbiology 45, 37-67
Gibson, R.M., Christensen, H. and Waley, S.G. (1990). Site-directed mutagenesis of P- lactamase I. Single and double mutants of Glu-166 and Ly s-73. Biochemical Journal 272, 613-619.
Hadonou, A.M., Wilkin, J.M., Varetto, L., Joris, B., Lamotte-Brasseur, J., Klein, D., Duez, C, Ghuysen, J.M. and Frere, J.M. (1992a). Site-directed mutagenesis of the Streptomyces R61 DD-peptidase. Catalytic function of the conserved residues around the active site and a comparison with class-A and class-C p-lactamases. European Journal of Biochemistry 207, 97-102.
Hadonou, A.M., Jamin, M., Adam, M., Joris, B., Dusart, J., Ghuysen, J.M. and Frere, J.M. (1992b). Importance of the His-298 residue in the catalytic mechanism of the Streptomyces R61 extracellular DD-peptidase. Biochemical Journal 282, 495-500.
Hechler, U., van den Weghe, M., Martin, H.H. and Frere, J.M. (1989). Overproduced P-lactamase and the outer membrane barrier as resistance factors in Serratia marcescens highly resistant to p-lactamase stable p-iactam antibiotics. Journal of General Microbiology 135, 1275-1290.
herzberg, O. (1991). Refined crystal structure of p-lactamase from Staphylococcus aureus PC! at 2.0 A resolution. Journal of Molecular Biology 217, 701-719.
Herzberg, O., Kapadia, G., Blanco, B, Smith, T.S. and Coulson, A. (1991). Structural basis for the inacti vation of the P54 mutant of beta-lactamase from Staphylococcus aureus PCI. Biochemistry 30, 9503-9509.
huletsky, A., Knox, J.R. and Levesque, R.C. (1993). Role of ser-238 and lys-240 in the hydrolysis of third-generation cephalosporins by SHV-type p-lactamases probed by site-directed mutagenesis and three-dimensional modeling. Journal of Biological Chemistry 268, 3690-3697.
Imtiaz, U., Manavathu, E.K., Lerner, S. and Mobashery, S. (1993a). Critical hydrogen bonding by serine 235 for cephalosporinase activity of TEM-1 p-iactamase. Antimicrobial Agents and Chemotherapy 37, 2438-2442.
Imtiaz, U., Billings, E., Knox, J.R., Manavathu, E.K., Lerner, S.A. and Mobashery, S. (1993b). Inacti vation of class A P-lactamases by clavulanic acid: the role of Arginine-244 in aproposed nonconcerted sequence of events. Journal of the American Chemical Society 115, 4435-4442.
Jacob, F., Joris, B., Dideberg, O., Dusart, J., Ghuysen, J.M. and Frere, J.M. (1990a). Engineering a novel p-lactamase by a single point mutation. Protein Engineering 4,79-86
Jacob, F., Joris, B., Lepage, S, Dusart, J. and Frere, J.M. (1990b). Role of the conserved amino acids of the SDN loop (Sern0, Aspm and Asn'-'2) in a class A p-lactamase studied by site-directed mutagenesis. Biochemical Journal 271, 399-406
Jacob F., Joris, B. and Frere, J.M. (1991). Active-site serine mutants of the Streptomyces albus G beta-lactamase. Biochemical Journal 277, 647-652
Jacob-Dubuisson, F., Lamotte-Brasseur, J., Dideberg, O., Joris, B. and Frere, J.M. (1991). Arginine220 is a critical residue for the catalytic mechanism of the Streptomyces albus G p-lactamase. Protein Engineering 4, 811-819.
Jacobs, C, Huang, L.J., Bartowsky, E., Normark, S. and Park, J.T. (1994a). Bacterial cell wall recycling provides cytosolic muropeptides as effectors for P-lactamase induction. EMBO Journal 13, 4684-4694
Jacobs, C, Joris, B., Jamin, M., vanBeeumen, J., vanHeuenoort, J., Park, J.T., Normark, S. and Frere, J.M. (1994b). AmpD, essential for both P-Iactaraase regulation and cell wall recycling, is a novel cytosolic iV-acetylmuramyi-l-alanine amidase. Molecular Microbiology, in press.
Jacoby, G.A. and Medeiros, A. A. (1991). More extended-spectrum p-lactamases. Antimicro Nal Agents and Chemotherapy 35, 1697-1704
Jamin, M., Wilkin, J.M. and Frere, J.M. (1993). A new kinetic mechanism for the concomitant hydrolysis and transfer reactions catalysed by bacterial DD-peptidases. Biochemistry 32, 7278-7285
Jelsch Clenfant, F., Masson, J.M. and Samama, J.P. (1992). β-lactamase TEM1 of E. coli. Crystal structure determination at 2.5 A resolution. FEBS Letters 299, 135-142
Joris, B., Hardt, K. and Ghuysen, J.M. (1994). Induction of P-lactamase and low affinity penicillin binding protein 2' synthesis in Gram-positive bacteria. New Comprehensive Biochemistry' 27, 505-515
Joris, B., Ghuysen, J.M., Dive, G., Renard, A., Dideberg, O., Charlier, P., FRERE, J.M., Kelly, J., Boyington, J., Moews, P. and Knox, J. (1988). The active-site-serine penicillin-recognizing enzymes as members of the Streptomyces R61 DD-peptidase family. Biochemical Journal 250, 313-324
Joris, B., Ledent, P., Dideberg, O., Fonze, E., Lamotte-Brasseur, J., Kelly, J.A., Ghuysen, J.M. and Frere, J.M. (1991). Comparison of the sequences of class-A beta-lactamases and of the secondary structure elements of penicillin-recognizing proteins. Antimicrobial Agents and Chemotherapy 35, 2294-2301
Juteau, J.M., Billings, E., Knox, J.R. and Levesque, R.C. (1992). Site-saturation mutagenesis and three-dimensional modelling of ROB-1 define a substrate binding role of Serl 30 in class A p-lactamases. Protein Engineering 5, 693-701
Kelly, J.A., Knox, J.R., Zhao, H., Frere, J.M. and Ghuysen, J.M. (1989). Crystallographic mapping of P-lactams bound to a d-alanyl-d-alanine peptidase target enzyme. Journal of Molecular Biology 209, 281-295
Knott-Hunziker, v., Petursson, S., Waley, S.G., Jaurin, B. and Grundstrom T. (1982). The acyl-enzyme mechanism of P-lactamase action. Biochemical Journal 207,315-322
Knox, J.R. and Moews, P.C. (1991). β-lactamase of Bacillus licheniformis 749/C-refinement at 0.2 nm resolution and analysis of hydration. Journal of Molecular Biology 220, 435-455.
Labia, R., Guionie, M. and Barthelemy, M. (1981). Properties of three carbenicillin- hydrolysing P-lactamases (CARB) from Pseudomonas aeruginosa: identification of a new enzyme. Journal of Antimicrobial Chemotherapy 7, 49-56
Lachapelle, J., dufresne, J. and Levesque, R. (1991). Characterization of bla (CARB-3) encoding the carbenicillinase-3 p-lactamase of Pseudomonas aeruginosa. Gene 102, 7-12.
Lamotte-Brasseur, J., Dive, G., Dideberg, O., Charlier, P., Frere, J.M. and Ghuysen, J.M. (1991). Mechanism of acy I transfer by the class A serine P-lactamase of Streptomyces albus G. Biochemical Journal 279, 213-221
Lamotte-Brasseur, J, Jacob-Dubuisson, F, Dive, G., Frere, J.M. and Ghuysen, J.M. (1992). Streptomyces albus G. serine p-lactamase. Probing of the catalytic mechanism via molecular modelling of mutant enzymes. Biochemical Journal 282, 189-195
Laws, A. P. and Page, M.I. (1989). The effect of the carboxy group on the chemical and P- lactamase reactivity of P-lactam antibiotics. Journal of the Chemical Society – Perkin Transactions 11, 1577-1581
Laws, A.P., Layland, N.J., Proctor, D.G. and Page, M.I. (1993). The roles of the carboxy group in p-lactam antibiotics and lysine 234 in p-lactamase I, Journal of the Chemica Society - Perkin Transactions II, 17-21
Ledent, P., Raquet, X, Joris, B, van Beeumen, J. and Frere, J.M. (1993). A comparative study of class D P-lactamases. Biochemical Journal 292, 555-562
Lee, K.Y., Hopkins, J.D., O'Brian, T.F and Syvanen, M. (1991). Gly238-Ser substitution changes the substrate specificity of the SHV class A P-lactamases. Protein Structure, Function and Genetics 11, 45-51.
Lenfant, F., Labia, R. and Masson, J.M. (1991). Replacement of Lysine 234 affects transition state stabilization in the active site of beta-lactamase TEM1. Journal of Biological Chemistry 266, 17187-17194.
Lenzini, V.M., Maodalena, J., Fraipont C, Joris, B., Matagne, A. and Dusart, J. (1992). Induction of Streptomyces cacaoi p-lactamase gene cloned in S. lividans. Molecular and General Genetics 235, 41-48.
Leung, Y.C., Robinson, C.V., Aplin, R.T. and Waley, S.G. (1994). Site-directed mutagenesis of p-lactamase I: role of Glu-166. Biochemical Journal 299, 671-678.
Lobkovsky, E., Moews, P.C., Hansong, L., Haiching, z., Frere, J.M. and Knox, J.R. (1993). Evolution of an enzyme activity: CrystalIographic structure of 2-A resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. Proceedings of the National Academy of Sciences, USA 90, 11257-11261.
Lobkovsky, E., Billings, E.M., Moews, P.C., Rahil, J., Pratt, R.F. and Knox, J.R. (1994). Crystallographic structure of a phosphonate derivative of the Enterobacter cloacae P99 cephalosporinase: mechanistic interpretation of a P-lactamase transition state analog. Biochemistry 33, 6762-6772.
Matagne, A. and Frere, J.M. (1994). Contribution of mutant analysis to the understanding of enzyme catalysis: the case of class A P-lactamases. Biochimica et BiophysicaActa, in press.
Matagne, A., Lamotte-Brasseur, J. and Frere, J.M. (1993). Interactions between active-site serine p-lactamasesandso-called P-lactamase-stable antibiotics. Kinetic and molecular modelling studies. European Journal of Biochemistry 217, 61-67.
Matagne, A., Misselyn-Bauduin, A.M., Joris, B., Erpicum, T., Granier, B. and Frere J M. (1990). The diversity of the catalytic properties of class A P-lactamases. Biochemical Journal 265, 131-146.
Matagne, A., Lamotte-Brasseur, J., Dive, G., Knox, J.R. and Frere, J.M. (1993). Interactions between active-site serine P-lactamases and compounds bearing a methoxy side chain on the oc-face of the P-lactam ring: kinetic and molecular modeling studies. Biochemical Journal 293, 607-611
Moews, P.C., Knox, J.R., Dideberg, O., Charlier, P. and Frere, J.M. (1990). P-iactamase of Bacillus licheniformis 749/C at 2 A resolution. Protein Structure, Function and Genetics 1, 156-171.
Monnaie, D. and Frere, J.M. (1993). Interaction of clavulanate with class C P-lactamases. FEBS Utters 334, 269-271
Monnaie, D., Dubus, A. and Frere, J.M. (1994). The role of Lys 67 in class C P-lactamase is mainly electrostatic. Biochemical Journal 302, 1-4
Monnaie, D., Virden, R. and Frere, J.M. (1992). A rapid-kinetic study of the class C p- lactamase of Enterobacter cloacae 908R. FEBS Letters 306, 108-112
Monnaie, D., Dubus, A., Cooke, D., Marchand-Brynaert, J., Normark, S. and Frere, J.M. (1994). Role of residue Lys 315 in the mechanism of action of the Enterobacter cloacae 908R P-lactamase. Biochemistry 33, 5193-5201
Murphy, B.P. and Pratt, R.F. (1991). A4Peny!acetylGlycyl-d-Aziridine-2-Carboxy1ate, an acyclic amide substrate of beta-lactamases - importance of the shape of the substrate in beta-lactamase evolution. Biochemistry 30, 3640-3649
Nikaido, H. and Normark, S. (1987). Sensitivity of Escherichia coli to various p-lactams is determined by the interplay of outer membrane permeability and degradati on by peripiasmic P-lactamase: a quantitative predictive treatment. Molecular Microbiology 1, 29-36
Nordmann, P., Ronco, E., Naas, T., Duport, C, Michel-Briand, Y. and Labia, R. (1993). Characterization of anovel extended-spectrum P-lactamase from Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 37, 962-969
Oefner, C, Darcy, A., Daly, J.J., Gubernator, K., Charnas, R.L., Heinze, I., Hub-schwerlen, C. and Winkler, F.K. (1990). Refined rystal structure of beta-lactamase from Citrobacter freundii indicates a mechanism for beta-lactam hydrolysis. Nature 343, 284-288.
Page, M.G.P. (1993). The kinetics of non-stoichiometric bursts of p-lactam hydrolysis catalysed by class C p-iactamases. Biochemical journal 295, 295-304
Payne, D.J. (1993). Metallo-p-lactamases a new therapeutic challenge. Journal of medical Microbiology 39, 93-99
Pazhanisamy, S., Govardhan, CP. and Pratt, R.F. (1989). β-lactamase-catalysedaminoly- sis of depsipeptides: amine specificity and steady-state kinetics. Biochemistry 28, 6863-6870.
Pratt, R.F. (1992). β -lactamase inhibition. In: The Chemistry of β-lactams (M.I. Page, Ed.), pp. 229-271. Chapman & Hall, London
Pratt, R.f. and Govardhan, CP. (1984). P-Lactamase-catalyzed hydrolysis of acyclic depsipeptides and acyl transfer to specific amino acid acceptors. Proceedings of the National Academy of Sciences, USA 81, 1302-1306
Rahil, J. and Pratt, R.F. (1994). Characterization of covalently bound enzyme inhibitors as transition-state analogs by protein stability measurements: phosphonate monoester inhibitors of a P-lactamase. Biochemistry 33, 116-125
Raquet, X., Lamotte-Brasseur, J., Fonze, E., Goussard, S., Courvalin, P. and Frere, J.M. (1994). TEM mutants hydrolysing third generation cephalosporins: a kinetic and molecular modelling analysis. Journal of Molecular Biology 244, 625-639
Sigal, I.S., Degrado, W.F., Thomas, B.J. and Petteway, S.R. (1984). Purification and properties of Thiol P-lactamase. Journal of Biological Chemistry 259, 5327-5332
Sougakoff, W., Goussard, S., Gerbaud, G. and Courvalin, P. (1988). Plasmid-mediated resistance to third-generation cephalosporins caused by TEM-type penicillinase genes. Review of Infectious Diseases 10, 879-884
Sowek, J.A., Singer, S.B., Ohringer, S., Malley, M.F., Dougherty, T.J., Gougoutas, J.Z. and Bush, K. (1991). Substitution of lysine at position 104 or 240 of TEM-1 pTZ18R P-factamase enhances the effect of serine-164 substitution on hydrolysis or affinity for cephalosporins and the monobactam aztreonam. Biochemistry 30, 3179-3188.
Strynadka, N.C.J., Adachi, H., Jensen, S.E., Johns, K., Sielecki, A., Betzel, C, Sutoh, K. and James, M.N.J. (1992). Molecular structure of the acyl-enzyme intermediate in p-lactam hydrolysis at 1.7 A resolution. Nature 359, 700-705
Sutton, B.J., Artymiuk, P.J., Cordero-Borboa, A.E., Little, C, Phillips D.C. and Waley, S.G. (1987). An X-ray crystaflographic study of p-lactamase II from Bacillus cereus.at 0.35 nm resolution. Biochemical Journal 248, 181-188
Tomasz, A. (1979). The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and Iyse bacteria. Annual Review of Microbiology 33, 113-137.
Varetto, L., De Meester, F., Monnaie, D., Marchand-Brynaert, J., Dive, G., Jacob, F. and frere, J.M. (1991). The importance of the negative charge of beta-lactam compounds i n the interactions with active-site serine DD-peptidases and beta-lactamases. Biochemical Journal 278, 801-807.
Vedel, G, Belaaouaj, A., Gilly, L., Labia, R., Philippon, A., Nevot, P. and Paul, G. (1991). Clinical isolates of Escherichia coli producing TRI p-lactamases: novel TEM-enzymes conferring resistance to p-lactamase inhibitors. Journal of Antimicrobial Chemotherapy 30, 449-462.
Waley, S.G. (1975). The pH-dependence and group modification of p-lactamase I. Biochemical Journal 149, 547-551.
Waley, S.G. (1987). An explicit model for bacterial resistance: application to beta-lactam antibiotics. Microbiological Sciences 4, 143-146.
Waley, S.G. (1992). P-lactamase: mechanism of action. In The Chemistry of ^-Lactams (M.I. Page, Ed.), pp. 198-228. Chapman & Hall, London.
Wilkin, J.M., Jamin, M., Damblon, C, Zhao, G.H., Joris, B., Duez, C. and Frere, J.M. (1993a). The mechanism of action of DD-peptidases. The role of Tyrosine 159 in the Streptomyces R61 DD-peptidase. Biochemical Journal 291, 537-544.
Wilkin, J.M., Jamin, M., Joris, B. and Frere, J.M. (1993b). The mechanism of action of DD-peptidases. The roleof Asparagine 161 in the Streptomyces R61 DD-peptidase. Biochemical Journal 293, 195-201.
wilkin, J.-M., dubus, A., Joris, B. and Frere, J.M. (1994). The mechanism of action of DD-peptidases. The role of threonines 299 and 301 in the Streptomyces R61 DD-peptidase. Biochemical Journal 301, 477-483.
Zafaralla, G., Manavathu, E.K., Lerner, S.A. and Mobashery, S. (1992). Elucidation of the role of arginine-244 in the turnover processes of class A P-lactamases. Biochemistry 31, 3847-3852.