[en] The X-ray crystal structures of covalent complexes of the Actinomadura R39 dd-peptidase and Escherichia coli penicillin-binding protein (PBP) 5 with beta-lactams bearing peptidoglycan-mimetic side chains have been determined. The structure of the hydrolysis product of an analogous peptide bound noncovalently to the former enzyme has also been obtained. The R39 DD-peptidase structures reveal the presence of a specific binding site for the D-alpha-aminopimelyl side chain, characteristic of the stem peptide of Actinomadura R39. This binding site features a hydrophobic cleft for the pimelyl methylene groups and strong hydrogen bonding to the polar terminus. Both of these active site elements are provided by amino acid side chains from two separate domains of the protein. In contrast, no clear electron density corresponding to the terminus of the peptidoglycan-mimetic side chains is present when these beta-lactams are covalently bound to PBP5. There is, therefore, no indication of a specific side-chain binding site in this enzyme. These results are in agreement with those from kinetics studies published earlier and support the general prediction made at the time of a direct correlation between kinetics and structural evidence. The essential high-molecular-mass PBPs have demonstrated, to date, no specific reactivity with peptidoglycan-mimetic peptide substrates and beta-lactam inhibitors and, thus, probably do not possess a specific substrate-binding site of the type demonstrated here with the R39 DD-peptidase. This striking deficiency may represent a sophisticated defense mechanism against low-molecular-mass substrate-analogue inhibitors/antibiotics; its discovery should focus new inhibitor design.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Sauvage, Eric ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Powell, Ailsa J
Heilemann, Jason
Josephine, Helen R
Charlier, Paulette ; Université de Liège - ULiège > Département des sciences de la vie > Cristallographie des macromolécules biologiques
Davies, Christopher
Pratt, R. F.
Language :
English
Title :
Crystal structures of complexes of bacterial DD-peptidases with peptidoglycan-mimetic ligands: the substrate specificity puzzle.
Macheboeuf P., Contreras-Martell C., Job V., Dideberg O., and Dessen A. Penicillin-binding proteins: key players in bacterial cell cycle and drug resistance processes. FEMS Microbiol. Rev. 30 (2006) 673-691
Goffin C., and Ghuysen J.-M. Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: presence of penicillin-susceptible target proteins versus lack of efficiency of penicillin as a therapeutic agent. Microbiol. Mol. Biol. Rev. 66 (2002) 702-738
Ghuysen J.-M., Frère J.-M., Leyh-Bouille M., Coyette J., Dusart J., and Nguyen-Distèche M. Use of model enzymes in the determination of the mode of action of penicillins and Δ3-cephalosporins. Annu. Rev. Biochem. 48 (1979) 73-101
Pratt, R. F. (2008). Substrate specificity of bacterial dd-peptidases (penicillin-binding proteins). Cell. Mol. Life Sci., in press (DOI 10.1007/s00018-008-7591-7).
Anderson J.W., and Pratt R.F. Dipeptide binding to the extended active site of the Streptomyces R61 d-alanyl-d-alanine peptidase: the path to a specific substrate. Biochemistry 39 (2000) 12200-12209
Kumar I., and Pratt R.F. Transpeptidation reactions of a specific substrate catalyzed by the Streptomyces R61 dd-peptidase: characterization of a chromogenic substrate and acyl acceptor. Biochemistry 44 (2005) 9971-9979
Kumar I., and Pratt R.F. Transpeptidation reactions of a specific substrate catalyzed by the Streptomyces R61 dd-peptidase: the structural basis of acyl acceptor specificity. Biochemistry 44 (2005) 9961-9970
Anderson J.W., Adediran S.A., Charlier P., Nguyen-Distèche M., Frère J.-M., Nicholas R.A., and Pratt R.F. On the substrate specificity of bacterial dd-peptidases: evidence from two series of peptidoglycan-mimetic peptides. Biochem. J. 373 (2003) 949-955
McDonough M.A., Anderson J.W., Silvaggi N.R., Pratt R.F., Knox J.R., and Kelly J.A. Structures of two kinetic intermediates reveal species specificity of penicillin-binding proteins. J. Mol. Biol. 322 (2002) 111-122
Josephine H.R., Kumar I., and Pratt R.F. The perfect penicillin? Inhibition of a bacterial dd-peptidase by peptidoglycan-mimetic β-lactams. J. Am. Chem. Soc. 126 (2004) 8122-8123
Silvaggi N., Josephine H.R., Kuzin A.P., Nagarajan R., Pratt R.F., and Kelly J.A. Crystal structures of complexes between the R61 dd-peptidase and peptidoglycan-mimetic β-lactams: a non-covalent complex with a "perfect penicillin". J. Mol. Biol. 345 (2005) 521-533
Josephine H.R., Charlier P., Davies C., Nicholas R.A., and Pratt R.F. Reactivity of penicillin-binding proteins with peptidoglycan-mimetic β-lactams: what's wrong with these enzymes?. Biochemistry 45 (2006) 15873-15883
Granier B., Duez C., Lepage S., Englebert S., Dusart J., Dideberg O., et al. Primary and predicted secondary structures of the Actinomadura R39 extracellular dd-peptidase, a penicillin-binding protein (PBP) related to Escherichia coli PBP4. Biochem. J. 282 (1992) 781-788
Duez C., Vanhove M., Gallet X., Bouillenne F., Docquier J.-D., Brans A., and Frère J.-M. Purification and characterization of PBP4a, a new low-molecular-weight penicillin-binding protein from Bacillus subtilis. J. Bacteriol. 183 (2001) 1595-1599
Sauvage E., Herman R., Petrella S., Duez C., Bouillenne F., Frère J.-M., and Charlier P. Crystal structure of the Actinomadura R39 dd-peptidase reveals new domains in penicillin-binding proteins. J. Biol. Chem. 280 (2005) 31249-31256
Kishida H., Unzai S., Roper D.I., Lloyd A., Park S.-Y., and Tame J.R.H. Crystal structure of penicillin-binding protein 4 (dacB) from Escherichia coli, both in the native form and covalently linked to various antibiotics. Biochemistry 45 (2006) 783-792
Sauvage E., Duez C., Herman R., Kerff F., Perrella S., Anderson J.W., et al. Crystal structure of the Bacillus subtilis penicillin-binding protein 4a, and its complex with a peptidoglycan-mimetic peptide. J. Mol. Biol. 371 (2007) 528-539
Ghuysen J.-M., Leyh-Bouille M., Campbell J.N., Moreno R., Frère J.-M., Duez C., et al. Structure of the wall peptidoglycan of Streptomyces R39 and the specificity profile of its exocellular DD-carboxypeptidase-transpeptidase for peptide acceptors. Biochemistry 12 (1973) 1243-1251
Zhao G.-H., Duez C., Lepage S., Forceille C., Rhazi N., Klein D., et al. Site-directed mutagenesis of the Actinomadura R39 dd-peptidase. Biochem J. 327 (1997) 377-381
Nelson D.E., and Young K.D. Penicillin-binding protein 5 affects cell diameter, contour and morphology of Escherichia coli. J. Bacteriol. 182 (2000) 1714-1721
Matsuhashi M., Tamaki S., Curtis S.J., and Strominger J.L. Mutational evidence for identity of penicillin-binding protein 5 in Escherichia coli with the major d-alanine carboxypeptidase IA activity. J. Bacteriol. 137 (1979) 644-647
Harris F., Brandenburg K., Seydel U., and Phoenix D. Investigations into the mechanisms used by the C-terminal anchors of Escherichia coli penicillin-binding proteins 4, 5, 6 and 6b for membrane interactions. Eur. J. Biochem. 269 (2002) 5821-5829
Nicholas R.A., Krings S., Tomberg J., Nicola G., and Davies C. Crystal structure of wild-type penicillin-binding protein 5 from Escherichia coli. J. Biol. Chem. 278 (2003) 644-647
Stefanova M.E., Davies C., Nicholas R.A., and Gutheil W.G. pH, inhibitor and substrate specificity studies on Escherichia coli penicillin-binding protein 5. Biochim. Biophys. Acta 1597 (2002) 292-300
Sauvage E., Kerff F., Terrak M., Ayala J.A., and Charlier P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32 (2008) 234-258
Kraulis P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24 (1991) 946-950
Merritt E.A., and Murphy M.E.P. Raster3D version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. Sect. D 50 (1994) 869-873
Faraci W.S., and Pratt R.F. Interactions of cephalosporins with the Streptomyces R61 DD-transpeptidase/carboxypeptidase. Influence of the 3′-substituent. Biochem. J. 238 (1986) 309-312
Nicholas R.A., Krings S., Tomberg J., Nicola G., and Davies C. Crystal structure of wild-type penicillin binding protein 5 from E. coli: implications for deacylation of the acyl-enzyme complex. J. Biol. Chem. 278 (2003) 52826-52833
Davies C., White S.W., and Nicholas R.A. Crystal structure of a deacylation-defective mutant of penicillin-binding protein 5 at 2.3 Å resolution. J. Biol. Chem. 276 (2001) 616-623
Nicola G., Peddi S., Stefanova M., Nicholas R.A., Gutheil W.G., and Davies C. Crystal structure of Escherichia coli penicillin-binding protein 5 bound to a tripeptide boronic acid inhibitor: a role for Ser-110 in deacylation. Biochemistry 44 (2005) 8207-8217
Kelly J.A., Dideberg O., Charlier P., Wery J.P., Libert M., Moews P.C., et al. On the origin of bacterial-resistance to penicillin-comparison of a beta-lactamase and a penicillin target. Science 231 (1986) 1429-1431
Priyadarshini R., Popham D.L., and Young K.D. Daughter cell separation by penicillin-binding proteins and peptidoglycan amidases in Escherichia coli. J. Bacteriol. 188 (2006) 5345-5355
Scheffers D.-J., Jones L.J., and Errington J. Several distinct localization patterns for penicillin-binding proteins in Bacillus subtilis. Mol. Microbiol. 51 (2004) 749-764
Kumar I., Josephine H.R., and Pratt R.F. Reactions of peptidoglycan-mimetic β-lactams with penicillin-binding proteins in vivo and in membranes. ACS Chem. Biol. 2 (2007) 620-624
Hesek D., Suvarov M., Morio K., Lee M., Brown S., Vakulenko S.B., and Mobashery S. Synthetic peptidoglycan substrates for penicillin-binding proteins of Gram-negative bacteria. J. Org. Chem. 69 (2004) 778-784
Morlot C., Pernot L., Le Gouellec A., Di Giulmi A.M., Vernet T., Dideberg O., and Dessen A. Crystal structures of a peptidoglycan synthesis regulatory factor (PBP3) from Streptococcus pneumoniae. J. Biol. Chem. 280 (2005) 15984-15991
Zhang W., Shi Q., Meroueh S.O., Vakulenko S.B., and Mobashery S. Catalytic mechanism of penicillin-binding protein 5 of Escherichia coli. Biochemistry 46 (2007) 10113-10121
Lim D., and Strynadka N.C.J. Structural basis for the β-lactam resistance of PBP 2a from methicillin-resistant Staphylococcus aureus. Nat. Struct. Biol. 9 (2002) 870-876
Macheboeuf P., Di Giulmi A.M., Job V., Vernet T., Dideberg O., and Dessen A. Active site restructuring regulates ligand recognition in class A penicillin-binding proteins. Proc. Natl Acad. Sci. USA 102 (2005) 577-582
Fuda C., Hesek D., Lee M., Morio K.-I., Nowak T., and Mobashery S. Activation for catalysis of penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus by bacterial cell wall. J. Am. Chem. Soc. 127 (2005) 2056-2057
Fuda C., Hesek D., Lee M., Heilmayer W., Novak R., Vakulenko S.B., et al. Mechanistic basis for the action of new cephalosporin antibiotics effective against methicillin- and vancomycin-resistant Staphylococcus aureus. J. Biol. Chem. 281 (2006) 10035-10041
Granier B., Duez C., Lepage S., Englebert S., Dusart J., Dideberg O., et al. Primary and predicted secondary structures of the Actinomadura R39 extracellular dd-peptidase, a penicillin-binding protein (PBP) related to the Escherichia coli PBP4. Biochem. J. 282 (1992) 781-788
Kabsch W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26 (1993) 795-800
CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. Sect. D 50 (1994) 760-763
Murshudov G.N., Vagin A.A., and Dodson E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. Sect. D 53 (1997) 240-255
Emsley P., and Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D 60 (2004) 2126-2132
Pflugrath J.W. The finer things in X-ray diffraction data collection. Acta Crystallogr. Sect. D 55 (1999) 1718-1725
Otwinowski Z., and Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276 (1997) 307-326
Brünger A.T., Adams P.D., Clore G.M., De Lano W.L., Gros P., Grosse-Kunstleve R.W., et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. Sect. D 54 (1998) 905-921
Jones T.A., Zou J.Y., Cowan S.W., and Kjeldgaard M. Improved methods for building protein structures in electron-density maps and the location of errors in these models. Acta Crystallogr. Sect. A 47 (1991) 110-119
Brünger A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355 (1992) 472-474
Laskowski R.A., MacArthur M.W., Moss D.S., and Thornton J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26 (1993) 283-291