Crystal structure of a complex between the Actinomadura R39 DD-peptidase and a peptidoglycan-mimetic boronate inhibitor: interpretation of a transition state analogue in terms of catalytic mechanism.
[en] The Actinomadura R39 DD-peptidase is a bacterial low molecular weight class C penicillin-binding protein. It has previously been shown to catalyze hydrolysis and aminolysis of small D-alanyl-D-alanine terminating peptides, especially those with a side chain that mimics the amino terminus of the stem peptide precursor to the bacterial cell wall. This paper describes the synthesis of (D-alpha-aminopimelylamino)-D-1-ethylboronic acid, designed to be a peptidoglycan-mimetic transition state analogue inhibitor of the R39 DD-peptidase. The boronate was found to be a potent inhibitor of the peptidase with a K(i) value of 32 +/- 6 nM. Since it binds some 30 times more strongly than the analogous peptide substrate, the boronate may well be a transition state analogue. A crystal structure of the inhibitory complex shows the boronate covalently bound to the nucleophilic active site Ser 49. The aminopimelyl side chain is bound into the site previously identified as specific for this moiety. One boronate oxygen is held in the oxyanion hole; the other, occupying the leaving group site of acylation or the nucleophile site of deacylation, appears to be hydrogen-bonded to the hydroxyl group of Ser 298. The Ser 49 oxygen appears to be hydrogen bonded to Lys 52. If it is assumed that this structure does resemble a high-energy tetrahedral intermediate in catalysis, it seems likely that Ser 298 participates as part of a proton transfer chain initiated by Lys 52 or Lys 410 as the primary proton donor/acceptor. The structure, therefore, supports a particular class of mechanism that employs this proton transfer device.
Research Center/Unit :
CIP - Centre d'Ingénierie des Protéines - ULiège
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Dzhekieva, Liudmila
Rocaboy, Mathieu ; Université de Liège - ULiège > Département des sciences de la vie > Cristallographie des macromolécules biologiques
Kerff, Frédéric ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Charlier, Paulette ; Université de Liège - ULiège > Département des sciences de la vie > Cristallographie des macromolécules biologiques
Sauvage, Eric ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Pratt, R. F.
Language :
English
Title :
Crystal structure of a complex between the Actinomadura R39 DD-peptidase and a peptidoglycan-mimetic boronate inhibitor: interpretation of a transition state analogue in terms of catalytic mechanism.
Publication date :
2010
Journal title :
Biochemistry
ISSN :
0006-2960
eISSN :
1520-4995
Publisher :
American Chemical Society, Washington, United States - District of Columbia
Vollmer, W. and Bertsche, U. (2007) Murein (peptidoglycan) structure, architecture and biosynthesis in E. coli Biochim. Biophys. Acta 1778, 1714-1734
Payne, D. J., Gwynn, M. N., Holmes, D. J., and Pompliano, D. L. (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery Nat. Rev. Drug Discovery 6, 29-39
Ghuysen, J.-M., Frère, J.-M., Leyh-Bouille, M., Coyette, J., Dusart, J., and Nguyen-Distèche, M. (1979) Use of model enzymes in the determination of the mode of action of penicillins and Δ3- cephalosporins Annu. Rev. Biochem. 48, 73-101
Waxman, D. J. and Strominger, J. L. (1983) Penicillin-binding proteins and the mechanism of action of β-lactam antibiotics Annu. Rev. Biochem. 52, 825-869
Macheboeuf, P., Contreras-Martel, C., Job, V., Dideberg, O., and Dessen, A. (2006) Penicillin-binding proteins: key players in bacterial cell cycle and drug resistance processes FEMS Microbiol. Rev. 30, 673-691
Sauvage, E., Kerff, F., Terrak, M., Ayala, J. R., and Charlier, P. (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis FEMS Microbiol. Rev. 32, 234-258
Josephine, H. R., Charlier, P., Davies, C., Nicholas, R. A., and Pratt, R. F. (2006) Reactivity of penicillin-binding proteins with peptidoglycan- mimetic β-lactams: what's wrong with these enzymes? Biochemistry 45, 15873-15883
Pratt, R. F. (2008) Substrate specificity of bacterial dd -peptidases (penicillin-binding proteins) Cell. Mol. Life Sci. 65, 2138-2155
Anderson, J. W. and Pratt, R. F. (2000) Dipeptide binding to the extended active site of the Streptomyces R61 d -alanyl- d -alanine-peptidase: the path to a specific substrate Biochemistry 39, 12200-12209
McDonough, M. A., Anderson, J. W., Silvaggi, N. R., Pratt, R. F., Knox, J. R., and Kelly, J. A. (2002) Structures of two kinetic intermediates reveal species specificity of penicillin-binding proteins J. Mol. Biol. 322, 111-122
Silvaggi, N. R., Josephine, H. R., Kuzin, A. P., Nagarajan, R., Pratt, R. F., and Kelly, J. A. (2005) Crystal structures of complexes between the R61 dd -peptidase and peptidoglycan-mimetic β-lactams: a non-covalent complex with a "perfect penicillin" J. Mol. Biol. 345, 521-533
Sauvage, E., Powell, A. J., Heilemann, J., Josephine, H. R., Charlier, P., Davies, C., and Pratt, R. F. (2008) Crystal structures of complexes of bacterial dd -peptidases with peptidoglycan-mimetic ligands: the substrate specificity puzzle J. Mol. Biol. 381, 383-393
Morlot, C., Pernot, C., LeGouellec, A., DiGiulmi, A. M., Vernet, T., Dideberg, O., and Dessen, A. (2005) Crystal structure of a peptidoglycan synthesis regulatory factor (PBP 3) from Streptococcus pneumoniae J. Biol. Chem. 280, 15984-15991
Sauvage, E., Duez, C., Herman, R., Kerff, F., Petrella, S., Anderson, J. W., Adediran, S. A., Pratt, R. F., Frère, J.-M., and Charlier, P. (2007) Crystal structure of the Bacillus subtilis penicillin-binding protein 4a and its complex with a peptidoglycan-mimetic peptide J. Mol. Biol. 371, 528-539
Stefanova, M. E., Tomberg, J., Davies, C., Nicholas, R. A., and Gutheil, W. G. (2006) Overexpression and enzymatic characterization of Neisseria gonorrhoeae penicillin-binding protein 4 Eur. J. Biochem. 271, 23-32
Rhazi, N., Charlier, P., Dehareng, D., Engher, D., Vermeire, M., Frère, J.-M., Nguyen-Distèche, M., and Fonzé, E. (2003) Catalytic mechanism of the Streptomyces K15 dd -transpeptidase/penicillin- binding protein probed by site-directed mutagenesis and structural analysis Biochemistry 42, 2895-2906
Nicola, G., Peddi, S., Stefanova, M., Nicholas, R. A., Gutheil, W. G., and Davies, C. (2005) Crystal structure of Escherichia coli penicillin-binding protein 5 bound to a tripeptide boronic acid inhibitor: a role for Ser 110 in deacylation Biochemistry 44, 8207-8217
Thomas, B., Wang, Y., and Stein, R. (2001) Kinetic and mechanistic studies of penicillin-binding protein 2x from Streptococcus pneumoniae Biochemistry 40, 15811-15823
Oliva, M., Dideberg, O., and Field, M. J. (2003) Understanding the acylation mechanisms of active site serine penicillin-recognizing proteins: a molecular dynamics simulation study Proteins: Struct., Funct., Genet. 52, 88-100
Díaz, N., Sordo, T. L., and Suárez, D. (2005) Insights into the base catalysis exerted by the dd -transpeptidase from Streptomyces K15: a molecular dynamics study Biochemistry 44, 3225-3240
Zhang, W., Shi, Q., Meroueh, S. O., Vakulenko, S. B., and Mobashery, S. (2007) Catalytic mechanism of penicillin-binding protein 5 of Escherichia coli Biochemistry 46, 10113-10121
Golemi-Kotra, D., Meroueh, S. O., Kim, C., Vakulenko, S. B., Bulychev, A., Stemmler, A. J., Stemmler, T. L., and Mobashery, S. (2004) The importance of a critical protonation state and the fate of the catalytic steps in class A β-lactamases and penicillin-binding proteins J. Biol. Chem. 279, 7652-7664
Gherman, B. F., Goldberg, S. D., Cornish, V. W., and Freisner, R. A. (2004) Mixed quantum mechanical/molecular mechanics (QM/MM) study of the deacylation reaction in a penicillin-binding protein (PBP) versus in a class C β-lactamase J. Am. Chem. Soc. 126, 7652-7664
Tipper, D. J. and Strominger, J. L. (1965) Mechanism of action of penicillins: a proposal based on their structural similarity to acyl- d -alanyl- d -alanine Proc. Natl. Acad. Sci. U.S.A. 54, 1133-1141
Pratt, R. F. (2002) Functional evolution of the serine β-lactamase active site J. Chem. Soc., Perkin Trans. 2, 851-861
Matagne, A., Dubus, A., Galleni, M., and Frère, J.-M. (1999) The β-lactamase cycle: a tale of selective pressure and bacterial ingenuity Nat. Prod. Rep. 16, 1-19
Minasov, G., Wang, X., and Shoichet, B. K. (2002) An ultrahigh resolution structure of TEM-1 β-lactamase suggests a role for Glu 166 as the general base in acylation J. Am. Chem. Soc. 124, 5333-5340
Nukaga, M., Mayama, M., Hujer, A. M., Bonomo, R. A., and Knox, J. R. (2003) Ultra high resolution structure of a class A β-lactamase: on the mechanism and specificity of the extended-spectrum SHV-2 enzyme J. Mol. Biol. 328, 289-301
Díaz, N., Sordo, T. L., Merz, K. M., Jr., and Suárez, D. (2003) Insights into the acylation mechanism of class A β-lactamases from molecular dynamics simulations of the TEM-1 enzyme complexed with benzylpenicillin J. Am. Chem. Soc. 125, 672-684
Hermann, J. C., Hensen, C., Ridder, L., Mulholland, A. J., and Höltje, H.-D. (2005) Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A β-lactamase with benzylpenicillin J. Am. Chem. Soc. 127, 4454-4465
Strynadka, N. C. J., Martin, R., Jensen, S. E., Gold, M., and Jones, J. B. (1996) Structure-based design of a potent transition state analogue for TEM-1 β-lactamase Nat. Struct. Biol. 3, 688-695
Powers, R. A., Caselli, E., Focia, P. J., Prati, F., and Shoichet, B. K. (2001) Structures of ceftazidime and its transition state analogue in complex with AmpC β-lactamase: implications for resistance mutations and inhibitor design Biochemistry 40, 9207-9214
Morandi, F., Caselli, E., Morandi, S., Focia, P. J., Blázquez, J., Shoichet, B. K., and Prati, F. (2003) Nanomolar inhibitors of AmpC β-lactamase J. Am. Chem. Soc. 125, 685-695
Chen, C. C. H., Rahil, J., Pratt, R. F., and Herzberg, O. (1993) Structure of a phosphonate-inhibited β-lactamase. An analog of the tetrahedral transition state/intermediate of β-lactam hydrolysis J. Mol. Biol. 234, 165-178
Lobkovsky, E., Billings, E. M., Moews, P. C., Rahil, J., Pratt, R. F., and Knox, J. R. (1994) Crystallographic structure of a phosphonate derivative of the Enterobacter cloacae P99 cephalosporinase: mechanistic interpretation of a β-lactamase transition state analog Biochemistry 33, 6762-6772
Maveyraud, L., Pratt, R. F., and Samama, J.-P. (1998) Crystal structure of an acylation transition state analog of the TEM-1 β-lactamase. Mechanistic implications for class A β-lactamases Biochemistry 37, 2622-2628
Silvaggi, N. R., Anderson, J. W., Brinsmade, S. A., Pratt, R. F., and Kelly, J. A. (2003) The crystal structure of phosphonate-inhibited d -Ala- d -Ala peptidase reveals an analogue of a tetrahedral transition state Biochemistry 42, 1199-1208
Inglis, S. R., Zervosen, A., Woon, E. C.Y., Gerards, T., Teller, N., Fischer, D. S., Luxen, A., and Schofield, C. J. (2009) Synthesis and evolution of 3-(dihydroxy-boryl) benzoic acids as dd -carboxypeptidase R39 inhibitors J. Med. Chem. 52, 6097-6106
Rodriquez, M. and Taddei, M. (2005) A simple procedure for the transformation of l -glutamic acid into the corresponding γ-aldehyde Synthesis 3, 493-495
Maurer, K. W. and Armstrong, R. W. (1996) Synthesis of the C1-C21 fragment of the serine/threonine phosphatase inhibitor tautomycin J. Org. Chem. 61, 3106-3116
Matteson, D. S., Sadhu, K. M., and Peterson, M. L. (1986) 99% chirally selective synthesis via pinanediol boronic esters: insect pheromones, diols, and an amino alcohol J. Am. Chem. Soc. 108, 810-819
Xu, Y., Soto, G., Adachi, H., van der Linden, M. P. G., Keck, W., and Pratt, R. F. (1994) Relative specificities of a series of β-lactam- recognizing enzymes towards the side chains of penicillins and of acyclic thioldepsipeptides Biochem. J. 302, 851-856
Kuzmic, P. (1996) Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase Anal. Biochem. 237, 260-273
Granier, B., Duez, C., Lepage, S., Englebert, S., Dusart, J., Dideberg, O., Van Beeumen, J., Frère, J.-M., and Ghuysen, J.-M. (1992) Primary and predicted secondary structures of the Actinomadura R39 extracellular dd -peptidase, a penicillin-binding protein (PBP) related to Escherichia coli PBP4 Biochem. J. 282, 781-788
Leslie, A. G. W. (1991) Molecular data processing Crystallogr., Comput. 5, 50-61
CCP4 (1994) The CCP4 suite: programs for protein crystallography Acta Crystallogr., Sect. D: Biol. Crystallogr. 50, 760-763
Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997) Refinement of macromolecular structures by the maximum-likelihood method Acta Crystallogr. D 53, 240-255
Painter, J. and Merritt, E. A. (2006) Optimal description of a protein structure in terms of multiple groups undergoing TLS motion Acta Crystallogr., Sect. D: Biol. Crystallogr. 62, 439-50
Emsley, P. and Cowtan, K. (2004) Coot: model-building tools for molecular graphics Acta Crystallogr., Sect. D: Biol. Crystallogr. 60, 2126-2132
Anderson, J. W., Adediran, S. A., Charlier, P., Nguyen-Distèche, M., Frère, J.-M., Nicholas, R. A., and Pratt, R. F. (2003) On the substrate specificity of bacterial dd -peptidases: evidence from two series of peptidoglycan-mimetic peptides Biochem. J. 373, 949-955
Tulinksy, A. and Blevins, R. A. (1987) Structure of a tetrahedral transition state complex γ-chymotrypsin dimer at 1.8 Å resolution J. Biol. Chem. 262, 7737-7743
Sauvage, E., Herman, R., Petrella, S., Duez, C., Bouillenne, F., Frére, J.-M., and Charlier, P. (2005) Crystal structure of the Actinomadura R39 dd -peptidase reveals new domains in penicillin-binding proteins J. Biol. Chem. 280, 31249-31256
Bernstein, N. J. and Pratt, R. F. (1999) On the importance of a methyl group in β-lactamase evolution: free energy profiles and molecular modeling Biochemistry 38, 10499-10510
Adediran, S. A., Zhang, Z., Nukaga, M., Palzkill, T., and Pratt, R. F. (2005) The d -methyl group in β-lactamase evolution: evidence from the Y221G and GC1 mutants of the class C β-lactamase of Enterobacter cloacae P99 Biochemistry 44, 7543-7552
Adediran, S. A., Cabaret, D., Flavell, R. R., Sammons, J. A., Wakselman, M., and Pratt, R. F. (2006) Synthesis and β-lactamase reactivity of α-substituted phenaceturates Bioorg. Med. Chem. 14, 7023-7033
Chen, Y., Shoichet, B., and Bonnet, R. (2005) Structure, function, and inhibition along the reaction coordinate of CTX-M β-lactamases J. Am. Chem. Soc. 127, 5423-5434
Gordon, E., Mouz, N., Duée, E., and Dideberg, O. (2000) The crystal structure of the penicillin-binding protein 2x from Streptococcus pneumoniae and its acyl-enzyme form: implication in drug resistance J. Mol. Biol. 299, 477-485
Lim, D. and Strynadka, N. C. J. (2002) Structural basis for the β-lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus Nat. Struct. Biol. 9, 870-876
Contreras-Martel, C., Job, V., Di Giulmi, A. M., Vernet, T., Dideberg, O., and Dessen, A. (2006) Crystal structure of penicillin-binding protein 1a (PBP1a) reveals a mutational hotspot implicated in β-lactam resistance in Streptococcus pneumoniae J. Mol. Biol. 355, 684-696
Kishida, H., Unzai, S., Roper, D. I., Lloyd, A., Park, S.-Y., and Tame, J. R. H. (2006) Crystal structure of penicillin binding protein 4 (dac B) from Escherichia coli, both in the native form and covalently linked to various antibiotics Biochemistry 45, 783-792
Chen, Y., Zhang, W., Shi, Q., Hesek, D., Lee, M., Mobashery, S., and Shoichet, B. K. (2009) Crystal structure of penicillin-binding protein 6 from Escherichia coli J. Am. Chem. Soc. 131, 14345-14354
Drawz, S. M. and Bonomo, R. A. (2010) Three decades of β-lactamase inhibitors Clin. Microbiol. Rev. 23, 160-201
Meroueh, S. O., Fisher, J. F., Schlegel, H. B., and Mobashery, S. (2005) Ab initio QM/MM study of class A β-lactamase acylation: dual participation of Glu 166 and Lys 73 in a concerted base promotion of Ser 70 J. Am. Chem. Soc. 127, 15397-15407
Gutheil, W. G. (1996) Antibacterial peptidomimetics and their preparation, U.S. Patent 5574017.