[en] In this paper, we adopt a geometric viewpoint to tackle the problem of estimating a linear model whose parameter is a fixed-rank positive semidefinite matrix. We consider two gradient descent flows associated to two distinct Riemannian quotient geometries that underlie this set of matri- ces. The resulting algorithms are non-linear and can be viewed as a generalization of Least Mean Squares that instrically constrain the parameter within the manifold search space. Such algorithms designed for low-rank matrices find applications in high-dimensional distance learning problems for classification or clustering.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Bonnabel, Silvère; Mines Paris-Tech > Robotics Group
Meyer, Gilles ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Sepulchre, Rodolphe ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Adaptive filtering for estimation of a low-rank positive semidefinite matrix
Publication date :
July 2010
Event name :
19th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2010)
Event place :
Budapest, Hungary
Event date :
5-9 july 2010
By request :
Yes
Audience :
International
Main work title :
Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems