Abstract :
[en] Enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) organisms are groups of pathogenic strains whose infections are characterized by a typical lesion of enterocyte attachment and effacement. They are involved in enteric diseases both in humans and in animals, and EHEC strains can be responsible for hemolytic uremic syndrome in humans. Previously, it was shown that the 2F3 monoclonal antibody (MAb) is specific for the O26 EHEC and EPEC strains (P. Kerr, H. Ball, B. China, J. Mainil, D. Finlay, D. Pollock, I. Wilson, and D. Mackie, Clin. Diagn. Lab. Immunol. 6:610–614, 1999). As these groups of bacteria play an important role in pathology, the aim of this paper was to characterize the antigen recognized
by the 2F3 MAb and its genetic determinant. A genomic locus containing the entire O-antigen gene cluster and half of the colanic acid gene cluster from an O26 EHEC strain was shown to be sufficient for the production of the antigen recognized by the 2F3 MAb in an E. coli DH5 strain. By transposon mutagenesis performed on the recombinant plasmid, all 2F3 enzyme-linked immunosorbent assay-negative mutants had their transposons inserted into the O-antigen gene cluster. The O-antigen gene cluster was also cloned from an O26 EHEC strain into the E. coli DH5 strain, which then produced a positive result with the 2F3 MAb. Further analysis of the type of lipopolysaccharides (smooth or rough) produced by the clones and mutants and of the
O antigen of the 2F3-positive clones confirmed that the epitope recognized by the 2F3 MAb is located on the O antigen in the O26 EHEC and EPEC strains and that its genetic determinant is located inside the O-antigen gene cluster.
Scopus citations®
without self-citations
1