Numerical simulation of two-dimensional and three-dimensional axisymmetric advection-diffusion systems with complex geometries using finite-volume methods
Ashbourn, J. M. A.; Geris, Liesbet; Gerisch, A.et al.
2010 • In Proceedings of the Royal Society. Mathematical, Physical and Engineering Sciences, 466 (2118), p. 1621-1643
[en] A finite-volume method has been developed that can deal accurately with complicated, curved boundaries for both two-dimensional and three-dimensional axisymmetric advection-diffusion systems. The motivation behind this is threefold. Firstly, the ability to model the correct geometry of a situation yields more accurate results. Secondly, smooth geometries eliminate corner singularities in the calculation of, for example, mechanical variables and thirdly, different geometries can be tested for experimental applications. An example illustrating each of these is given: fluid carrying a dye and rotating in an annulus, bone fracture healing in mice, and using vessels of different geometry in an ultracentrifuge.
Disciplines :
Mechanical engineering Computer science
Author, co-author :
Ashbourn, J. M. A.; Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
Geris, Liesbet ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique
Young, C. J. S.; Magdalen College, University of Oxford, Oxford OX1 4AU, UK
Language :
English
Title :
Numerical simulation of two-dimensional and three-dimensional axisymmetric advection-diffusion systems with complex geometries using finite-volume methods
Publication date :
2010
Journal title :
Proceedings of the Royal Society. Mathematical, Physical and Engineering Sciences
Bailón-Plaza, A., Van Der Meulen, M.C.H., A mathematical framework to study the effects of growth factor influences on fracture healing (2001) J. Theor. Biol., 212, pp. 191-209. , doi:10.1006 /jtbi.2001.2372
Berger, M., LeVeque, R.J., An adaptive Cartesian mesh algorithm for the Euler equations in arbitrary geometries (1989) Proc. 9th AIAA Computational Fluid Dynamics Conf., Buffalo, NY, , 13-15 June 1989, AIAA paper AIAA-89-1930
Berger, M.J., Helzel, C., LeVeque, R.J., H-Box methods for the approximation of hyperbolic conservation laws on irregular grids (2003) SIAM J. Numer. Anal., 41, pp. 893-918. , doi:10.1137 /S0036142902405394
Calhoun, D., LeVeque, R.J., A Cartesian grid finite-volume method for the advection-diffusion equation in irregular geometries (2000) J. Comput. Phys., 157, pp. 143-180. , doi:10.1006 /jcph.1999.6369
Calhoun, D.A., Helzel, C., LeVeque, R.J., Logically rectangular grids and finite volume methods for PDEs in circular and spherical domains (2008) SIAM Rev., 50, pp. 723-752. , doi:10.1137 /060664094
Colella, P., Graves, D.T., Keen, B.J., Modiano, D., A Cartesian grid embedded boundary method for hyperbolic conservation laws (2006) J. Comput. Phys., 211, pp. 347-366. , doi:10.1016 /j.jcp. 2005.05.026
Geris, L., Gerisch, A., Maes, C., Carmeliet, G., Weiner, R., Vander Sloten, J., Van Oosterwyck, H., Mathematical modeling of fracture healing in mice: Comparison between experimental data and numerical simulation results (2006) Medical and Biological Engineering and Computing, 44 (4), pp. 280-289. , DOI 10.1007/s11517-006-0040-6
Gerisch, A., (2001) Numerical Methods for the Simulation of Taxis-Diffusion-Reaction Systems, , PhD thesis, Martin-Luther Universität, Halle-Wittenberg, Germany
Gerisch, A., Chaplain, M.A.J., Robust numerical methods for taxis-diffusion-reaction systems: Applications to biomedical problems (2006) Mathematical and Computer Modelling, 43 (1-2), pp. 49-75. , DOI 10.1016/j.mcm.2004.05.016, PII S0895717705004504
Gerisch, A., Geris, L., A finite volume spatial discretisation for taxis-diffusion-reaction systems with axi-symmetry: Application to fracture healing (2007) Mathematical Modeling of Biological Systems, pp. 299-311. , eds A. Deutsch, L. Brusch, H. Byrne, G. de Vries & H. Herzel, Boston, MA: Birkhäuser. doi:10.1007/978-0-8176-4558-8-27
Hundsdorfer, W., Verwer, J.G., Numerical solution of time-dependent advection-diffusionreaction equations (2003) Springer Series in Computational Mathematics, p. 33. , Berlin, Germany: Springer
Johansen, H., Colella, P., A Cartesian Grid Embedded Boundary Method for Poisson's Equation on Irregular Domains (1998) Journal of Computational Physics, 147 (1), pp. 60-85. , DOI 10.1006/jcph.1998.5965, PII S0021999198959654
LeVeque, R.J., (2002) Finite Volume Methods for Hyperbolic Problems. Cambridge, , UK: Cambridge University Press
McCorquodale, P., Colella, P., Johansen, H., A Cartesian grid embedded boundary method for the heat equation on irregular domains (2001) J. Comput. Phys., 173, pp. 620-635. , doi:10.1006 /jcph.2001.6900
Schwartz, P., Barad, M., Colella, P., Ligocki, T., A Cartesian grid embedded boundary method for the heat equation and Poisson's equation in three dimensions (2006) J. Comput. Phys., 211, pp. 531-550. , doi:10.1016/j.jcp. 2005.06.010
Selivanova, O.M., Shiryaev, V.M., Tiktopulo, E.I., Potekhin, S.A., Spirin, A.S., Compact globular structure of Thermus thermophilus ribosomal protein S1 in solution: Sedimentation and calorimetric study (2003) J. Biol. Chem., 278, pp. 36311-36314
Svedberg, T., Fåhraeus, R., A new method for the determination of the molecular weight of the proteins (1926) J. Am. Chem. Soc., 48, pp. 430-438. , doi:10.1021/ja01413a019
Van Leer, B., Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme (1974) J. Comput. Phys., 14, pp. 361-370. , doi:10.1016 /0021-9991 74 90019-9
Wedan, B., South, J.C., A method for solving the transonic full-potential equation for general configurations (1983) Proc. 6th AIAA Computational Fluid Dynamics Conf., Danvers, MA, pp. 83-1889. , July 1983, AIAA paper
Weiner, R., Schmitt, B.A., Podhaisky, H., ROWMAP-a ROW-code with Krylov techniques for large stiff ODEs (1997) Appl. Numer. Math., 25, pp. 303-319. , doi:10.1016/S0168-9274 97 00067-6