mathematical model; numerical simulation; bone regeneration; oral implant
Abstract :
[en] The objective of this study was to see whether a mathematical model of fracture healing was able to mimic bone formation around an unloaded screw-shaped titanium implant as it is well-believed that both processes exhibit many biological similarities. This model describes the spatio-temporal evolution of cellular activities, ranging from mesenchymal stem cell migration, proliferation, differentiation to bone formation, which are initiated and regulated by the growth factors present at the peri-implant site. For the simulations, a finite volume code was used and adequate initial and boundary conditions were applied. Two sets of analyses have been performed, in which either initial and boundary condition or model parameter values were changed with respect to the fracture healing model parameter values. For a number of combinations, the spatio-temporal evolution of bone density was well-predicted. However reducing cell proliferation rate and increasing osteoblast differentiation and osteogenic growth factor synthesis rates, the simulation results were in agreement with the experimental data.
Amor, N.; Division of Biomechanics and Engineering Design, Department of Mechanical Engineering, Katholieke Universiteit Leuven (K.U.L.), Leuven, Belgium
Geris, Liesbet ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique
Vander Sloten, Jos; Division of Biomechanics and Engineering Design, Department of Mechanical Engineering, Katholieke Universiteit Leuven (K.U.L.), Leuven, Belgium
Van Oosterwyck, H.; Division of Biomechanics and Engineering Design, Department of Mechanical Engineering, Katholieke Universiteit Leuven (K.U.L.), Leuven, Belgium
Language :
English
Title :
Modelling the early phases of bone regeneration around an endosseous oral implant
Publication date :
2009
Journal title :
Computer Methods in Biomechanics and Biomedical Engineering
Abrahamsson I, Berglundh T, Linder E, Lang NP, Lindhe J. 2004. Early bone formation adjacent to rough and turned endosseous implant surfaces. An experimental study in the dog. Clin Oral Implants Res. 15:381-392.
Anderson JM. 2000. The cellular cascades of wound healing. In: Davies JE, editor. Bone engineering. Toronto: em Squared Inc. p. 81-93.
Bailón Plaza A, van der Meulen MCH. 2001. A mathematical framework to study the effects of growth factor influences on fracture healing. J Theor Biol. 212:191-209.
Berglundh T, Abrahamsson I, Lang N, Lindhe J. 2003. De novo alveolar bone formation adjacent to endosseous implants: a model in the dog. Clin Oral Implants Res. 14:251-262.
Boticelli D, Berglundh T, Buser D, Lindhe J. 2003. Appositional bone formation in marginal defects at implants: an experimental study in the dog. Clin Oral Implants Res. 14: 1-9.
Botticelli D, Persson LG, Lindhe J, Berglundh T. 2006. Bone tissue formation adjacent to implants placed in fresh extraction sockets: an experimental study in dogs. Clin Oral Implants Res. 17:351-358.
Boyan BD, Schwartz Z. 2000. Modulation of osteogenesis via implant surface design. In: Davies JE, editor. Bone engineering. Toronto: em Squared Inc. p. 232-239.
Boyan BD, Lossdörfer S, Wang L, Zhao G, Lohmann CH, Cochran DL, Schwartz Z. 2003. Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies. Eur Cell Mater. 6:22-27.
Bränemark T, Adell R, Breine U, Hansson BO, Lindstrom J, Ohlsson A. 1969. Intra-osseous anchorage of dental prostheses (I): experimental studies. Scand J Plast Reconstr Surg. 3:81-100.
Braun G, Kohavi D, Amir D, Luna MH, Caloss R, Sela J, Dean DD, Boyan BD, Schwartz Z. 1995. Markers of primary mineralization are correlated with bone-bonding ability of titanium or stainless steel in vivo. Clin Oral Implants Res. 6: 1-13.
Buser D, Broggini N, Wireland M, Schenk RK, Denzer AJ, Cochran DL, Hoffmann B, Lussi A, Steinemann SG. 2004. Enhanced bone apposition to a chemically modified SLA surface. J Dent Res. 83(7):529-533.
Cochran DL, Schenk R, Buser D, Wozney JM, Jones AA. 1999. Recombinant human morphogenetic protein-2 stimulation of bone formation around endosseous dental implants. J Periodontol:139-150.
Colnot C, Romero DM, Huang S, Rahman J, Currey JA, Nanci A, Brunski JB, Helms JA. 2007. Molecular analysis of healing at a bone-implant interface. J Dent Res. 86(9): 862-867.
Davies JE. 1998. Mechanisms of endosseous integration. Int J Prosthodont. 11:391-401.
Davies JE, Hosseini MM. 2000. Histodynamics of endosseous wound healing. In: Davies JE, editor. Bone engineering. Toronto: em Squared Inc. p. 1-14.
Futami T, Fuji N, Ohnishi H, Taguchi N, Kusakari H, Ohshima H, Maeda T. 2000. Tissue response to titanium implants in the rat maxilla: ultrastructural and histochemical observations of the bone-titanium interface. J Periodontol. 71:287-298.
Gemmell CH, Park JK. 2000. Initial blood interactions with endosseous implant materials. In: Davies JE, editor. Bone engineering. Toronto: em Squared Inc. p. 108-117.
Geris L, Gerisch A, Maes C, Carmeliet G, Weiner R, Vander Sloten J, Van Oosterwyck H. 2006. Mathematical modeling of fracture healing in mice: comparison between experimental data and numerical simulation results. Med Biol Eng Comput. 44:280-289.
Gerisch A. 2001. Numerical methods for the simulation of taxisdiffusion-reaction-systems [dissertation]. Halle-Wittenberg: Martin-Luther-Universität.
Gross UM. 1988. Biocompatibility: the interaction of biomaterials and host response. J Dent Educ. 52:798-803.
Hoshaw SJ, Brunski JB, Cochran GV. 1994. Mechanical loading of Bränemark implants affects interfacial bone modelling and remodelling. Int J Oral Maxillofac Implants. 9:345-360.
Kieswetter K, Schwartz Z, Dean DD, Boyan BD. 1996a. The role of implant surface characteristics in the healing of bone. Crit Rev Oral Biol Med. 7:329-345.
Kieswetter K, Schwartz Z, Hummert TW, Cochran DL, Simpson J, Dean DD. 1996b. Surface roughness modulates the local factor production of growth factors and cytokines by osteoblast-like MG-63 cells. J Biomed Mater Res. 32:55-63.
Kikuchi L, Park JY, Victor C, Davies JE. 2005. Platelet interactions with calcium-phosphate-coated surfaces. Biomaterials 26:5285-5295.
Lazzara RJ, Testori T, Trisi P, Porter SS, Weinstein RL. 1999. A human histologic analysis of esseotite and machined surfaces using implants with 2 opposing surfaces. Int J Periodontics Restorative Dent. 19:117-129.
Lincks J, Boyan BD, Blanchard CR, Lohmann CH, Liu Y, Cochran DL, Dean DD, Schwartz Z. 1998. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 19: 2219-2232.
Liu Y, De Groot K, Hunziker EB. 2005. BMP-2 liberated from biomimetic implant coatings induces and sustains directossificationinanectopicratmodel. Bone 36(5):745-757.
Liu Y, Huse RO, de Groot K, Buser D, Hunziker EB. 2007. Delivery mode and efficacy of BMP-2 in association with implants. J Dent Res. 86(1):84-89.
Leucht P, Kim JB, Wazen R, Currey JA, Nanci A, Brunski JB, Helms JA. 2007a. Effect of mechanical stimuli on skeletal regeneration around implants. Bone 40(4): 919-930.
Leucht P, Kim JB, Currey JA, Brunski J, Helms JA. 2007b. FAK-mediated mechanotransduction in skeletal regeneration. PLoS ONE 2(4):e390.
Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford J, Dean DD, Cochran DL, Boyan BD. 1995. Effect of titanium roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res. 29(3):389-401.
Matsuo M, Nakamura T, Kishi Y, Takahashi K. 1999. Microvascular changes after placement of titanium implants: scanning electron microscopy observations of machined and titanium plasma-sprayed implants in dogs. J Periodontol. 70: 1330-1338.
Nanci A, McCarthy GF, Zalzal S, Clokie CML, Warshawsky H, McKee MD. 1994. Tissue response to titanium implants in the rat tibia: ultrastructural, immunocytochemical and lectincytochemical characterization of the bone-titanium interface. Cells Mater. 4(1):1-30.
Oprea WE, Karp JM, Hosseini MM, Davies JE. 2003. Effect of platelet releasate on bone cell migration and recruitment in vitro. J Craniofac Surg. 14(3):292-300.
Park YJ, Davies JE. 2000. Red blood cell and platelet interactions with titanium implant surfaces. Clin Oral Implants Res. 11: 530-539.
Plenk HJ, Zitter H. 1996. Material considerations. In: Watzek G, editor. Endosseous implants; scientific and clinical aspects. Chicago, NY: Quintessence. p. 63-99.
Puleo DA, Nanci A. 1999. Understanding and controlling the bone-implant interface. Biomaterials 20:2311-2321.
Schwartz Z, Kieswetter K, Dean DD, Boyan BD. 1997. Underlying mechanisms at the bone-surface interface during regeneration. J Periodontal Res. 32:166-171.
Schwartz Z, Lohmann CH, Oefinger J, Bonewald LF, Dean DD, Boyan BD. 1999. Implant surface characteristics modulate differentiation behavior in cells in the osteoblastic lineage. Adv Dent Res. 13:38-48.
Schwarz F, Herten M, Sager M, Wieland M, Dard M, Becker J. 2007. Histological and immunohistochemical analysis of initial and early subepithelial connective tissue attachment at chemically modified and conventional SLA titanium implant. A pilot study in dogs. Clin Oral Investig. 11: 245-255.
Watzak G, Zechner W, Ulm C, Tangl S, Tepper G, Watzek G. 2005. Histological and histomorphometric analysis of three types of dental implants following 18 months of occlusal loading: a preliminary study in baboons. Clin Oral Implants Res. 16:408-416.
Zinger O, Zhao G, Schwartz Z, Simpson Z, Wieland M, Landolt D, Boyan B. 2005. Differential regulation of osteoblats by substrate microstructural features. Biomaterials 26:1837-1847.