Article (Scientific journals)
Some prevalent results about strongly monoHölder functions
Clausel, Marianne; Nicolay, Samuel
2010In Nonlinearity, 23, p. 2101-2116
Peer Reviewed verified by ORBi
 

Files


Full Text
nlin.pdf
Publisher postprint (171.21 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
prevalence; Hölder regularity; dimension of the graph; wavelets
Abstract :
[en] We study the typical behaviour of strongly monoHölder functions from the prevalence point of view. To this end we first prove wavelet-based criteria for strongly monoHölder functions. We then use the notion of prevalence to show that the functions of $C^\alpha (R^d)$ are almost surely strongly monoHölder with Hölder exponent $\alpha$. Finally, we prove that for any $\alpha\in (0, 1)$ on a prevalent set of $C^\alpha (R^d)$ the Hausdorff dimension of the graph is equal to $d +1-\alpha$.
Disciplines :
Mathematics
Author, co-author :
Clausel, Marianne;  Université Paris Est > UMR 8050 du CNRS > Laboratoire d'analyse et de mathématiques appliquées
Nicolay, Samuel  ;  Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Language :
English
Title :
Some prevalent results about strongly monoHölder functions
Publication date :
2010
Journal title :
Nonlinearity
ISSN :
0951-7715
Publisher :
Institute of Physics
Volume :
23
Pages :
2101-2116
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 30 July 2010

Statistics


Number of views
106 (32 by ULiège)
Number of downloads
25 (19 by ULiège)

Scopus citations®
 
14
Scopus citations®
without self-citations
9
OpenCitations
 
14
OpenAlex citations
 
16

Bibliography


Similar publications



Contact ORBi