prevalence; Hölder regularity; dimension of the graph; wavelets
Abstract :
[en] We study the typical behaviour of strongly monoHölder functions from the prevalence point of view. To this end we first prove wavelet-based criteria for strongly monoHölder functions. We then use the notion of prevalence to show that the functions of $C^\alpha (R^d)$ are almost surely strongly monoHölder with Hölder exponent $\alpha$. Finally, we prove that for any $\alpha\in (0, 1)$ on a prevalent set of $C^\alpha (R^d)$ the Hausdorff dimension of the graph is equal to $d +1-\alpha$.
Disciplines :
Mathematics
Author, co-author :
Clausel, Marianne; Université Paris Est > UMR 8050 du CNRS > Laboratoire d'analyse et de mathématiques appliquées
Nicolay, Samuel ; Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Language :
English
Title :
Some prevalent results about strongly monoHölder functions
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Adler R J 1981 The Geometry of Random Fields (New York: Wiley)
Abry P, Lashermes B and Jaffard S 2006 Wavelets Leaders in Multifractal Analysis, Wavelets Analysis and Applications (Applied and Numerical Harmonic Analysis) ed T Qian et al (Basle: Birkauser) pp 219-64
Berry MV and Lewis ZV 1980 On The Weierstrass Mandelbrot fractal function Proc. R. Soc. Lond.A370 459-86
Christensen J 1972 On sets of Haar measure zero in Abelian Polish groups Israel J. Math. 13 255-60
Clausel M 2008 Quelques notions d'irrégularité uniforme et ponctuelle : le point de vue ondelettes PhD Thesis Université Paris XII
Clausel M and Nicolay S 2010Wavelet techniques for pointwise anti-Hölderian irregularity Construct. Approx. submitted
Daubechies I 1988 Orthonormal bases of compactly supported wavelets Commun. Pure Appl. Math. 41 909-96
Daubechies I and Lagarias J 1992 Two scale difference equations II local regularity, infinite products of matrices and fractals SIAM J. Math. Anal. 23 1031-79
Geman D and Horowitz J 1980 Occupation densities Anal. Prob. 8 1-67
DeVore R A and Sharpley R C 1984 Maximal functions measuring smoothness Mem. Am. Math. Soc. 47
Falconer K 1990 Fractal Geometry: Mathematical Foundations and Applications (New York: Wiley)
Heurteaux Y 2003 Weierstrass function with random phases Trans. Am. Math. Soc. 355 3065-77
Hunt B R 1998 The Hausdorff dimension of graphs ofWeierstrass functions Proc. Am. Math. Soc. 126 791-800
Jaffard S 2004 Wavelet techniques in multifractal analysis, fractal geometry and applications Proc. Symp. Pure Math. 72 91-151
Jaffard S and Nicolay S 2009 Pointwise smoothness of space-filling functions Appl. Comput. Harmon. Anal. 26 181-99
Kahane J P 1986 Geza Freud and lacunary Fourier series J. Approx. Theory 46 51-7
Khintchine A 1924 Ein satz der Wahrscheinlichkeitsrechnung Fundam. Math. 6 9-20
Krantz S G 1983 Lipschitz spaces, smoothness of functions, and approximation theory Expo. Math. 1 193-260
Ledrappier F 1992 On the dimension of some graphs Comtemp. Math. 135 285-93
Mallat S 1998 A Wavelet Tour of Signal Processing (New York: Academic Press)
Mandelbrot B B 1977 Fractals: Form, Chance and Dimension (San Francisco: Freeman)
Mc Mullen C 1984 The Hausdorff dimension of general Sierpinki carpets Nagoya Math. J. 96 1-9
Meyer Y 1990 Ondelettes et Opérateurs (Paris: Hermann)
Mauldin R D and Williams S C 1986 On the Hausdorff dimensions of some graphs Trans. Am. Math. Soc. 298 793-803
Roueff F 2003 Almost sure Hausdorff dimension of graphs of random wavelet series J. Fourier Anal. Appl. 9 237-60
Stein E M 1970 Singular Integrals and Differentiabilities Properties of Functions (Princeton, NJ: University Press)
Tricot C 1992 Courbes et Dimension Fractale (Berlin: Springer)
WeissM1959 On the lawof iterated logarithm for lacunary trigonometric series Trans. Am. Math. Soc. 91 444-69
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.